Search results
Results from the WOW.Com Content Network
In chemistry, the term "turnover number" has two distinct meanings.. In enzymology, the turnover number (k cat) is defined as the limiting number of chemical conversions of substrate molecules per second that a single active site will execute for a given enzyme concentration [E T] for enzymes with two or more active sites. [1]
On the other hand, the V max will decrease relative to an uninhibited enzyme. On a Lineweaver-Burk plot, the presence of a noncompetitive inhibitor is illustrated by a change in the y-intercept, defined as 1/V max. The x-intercept, defined as −1/K M, will remain the same. In competitive inhibition, the inhibitor will bind to an enzyme at the ...
To address such a paradox, Kuo-Chen Chou and his co-workers proposed a model by taking into account the spatial factor and force field factor between the enzyme and its substrate and found that the upper limit could reach 10 10 M −1 s −1, [6] [7] [8] and can be used to explain some surprisingly high reaction rates in molecular biology. [5 ...
Chemical game theory is an alternative model of game theory that represents and solves problems in strategic interactions, or contested human decision making. Differences with traditional game theory concepts include the use of metaphorical molecules called “knowlecules”, [1] [2] which represent choices and decisions among players in the game.
In game theory and economics, a mechanism is called incentive-compatible (IC) [1]: 415 if every participant can achieve their own best outcome by reporting their true preferences. [ 1 ] : 225 [ 2 ] For example, there is incentive compatibility if high-risk clients are better off in identifying themselves as high-risk to insurance firms , who ...
In the field of biochemistry, the specificity constant (also called kinetic efficiency or /), is a measure of how efficiently an enzyme converts substrates into products.A comparison of specificity constants can also be used as a measure of the preference of an enzyme for different substrates (i.e., substrate specificity).
In game theory, a solution concept is a formal rule for predicting how a game will be played. These predictions are called "solutions", and describe which strategies will be adopted by players and, therefore, the result of the game. The most commonly used solution concepts are equilibrium concepts, most famously Nash equilibrium.
A higher-order simultaneous game [4] is a generalization of a Simultaneous game in which players are defined by selection functions rather than by utility functions. Formally, a higher-order simultaneous game for n players contains the following elements: A set R of outcomes. For each player i, a set X i of choices (possible actions).