enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Single-linkage clustering - Wikipedia

    en.wikipedia.org/wiki/Single-linkage_clustering

    However, in single linkage clustering, the order in which clusters are formed is important, while for minimum spanning trees what matters is the set of pairs of points that form distances chosen by the algorithm. Alternative linkage schemes include complete linkage clustering, average linkage clustering (UPGMA and WPGMA), and Ward's method. In ...

  3. Complete-linkage clustering - Wikipedia

    en.wikipedia.org/wiki/Complete-linkage_clustering

    Complete linkage clustering avoids a drawback of the alternative single linkage method - the so-called chaining phenomenon, where clusters formed via single linkage clustering may be forced together due to single elements being close to each other, even though many of the elements in each cluster may be very distant to each other. Complete ...

  4. Nearest-neighbor chain algorithm - Wikipedia

    en.wikipedia.org/wiki/Nearest-neighbor_chain...

    As with complete linkage and average distance, the difficulty of calculating cluster distances causes the nearest-neighbor chain algorithm to take time and space O(n 2) to compute the single-linkage clustering. However, the single-linkage clustering can be found more efficiently by an alternative algorithm that computes the minimum spanning ...

  5. Hierarchical clustering - Wikipedia

    en.wikipedia.org/wiki/Hierarchical_clustering

    The standard algorithm for hierarchical agglomerative clustering (HAC) has a time complexity of () and requires () memory, which makes it too slow for even medium data sets. . However, for some special cases, optimal efficient agglomerative methods (of complexity ()) are known: SLINK [2] for single-linkage and CLINK [3] for complete-linkage clusteri

  6. Cluster analysis - Wikipedia

    en.wikipedia.org/wiki/Cluster_analysis

    Popular choices are known as single-linkage clustering (the minimum of object distances), complete linkage clustering (the maximum of object distances), and UPGMA or WPGMA ("Unweighted or Weighted Pair Group Method with Arithmetic Mean", also known as average linkage clustering). Furthermore, hierarchical clustering can be agglomerative ...

  7. UPGMA - Wikipedia

    en.wikipedia.org/wiki/UPGMA

    Complete linkage clustering avoids a drawback of the alternative single linkage clustering method - the so-called chaining phenomenon, where clusters formed via single linkage clustering may be forced together due to single elements being close to each other, even though many of the elements in each cluster may be very distant to each other ...

  8. Complete linkage - Wikipedia

    en.wikipedia.org/wiki/Complete_linkage

    In complete-linkage Hierarchical Clustering, this process of combining data points into clusters of increasing size is repeated until all date as part of a single cluster. [6] The resulting diagram from a Hierarchical Cluster Analysis is called a dendrogram, in which data are nested into brackets of increasing dissimilarity. Two common issues ...

  9. Microarray analysis techniques - Wikipedia

    en.wikipedia.org/wiki/Microarray_analysis_techniques

    Single linkage (minimum method, nearest neighbor) Average linkage ; Complete linkage (maximum method, furthest neighbor) Different studies have already shown empirically that the Single linkage clustering algorithm produces poor results when employed to gene expression microarray data and thus should be avoided. [18] [19]