Search results
Results from the WOW.Com Content Network
Neptune's mass of 1.0243 × 10 26 kg [8] is intermediate between Earth and the larger gas giants: it is 17 times that of Earth but just 1/19th that of Jupiter. [g] Its gravity at 1 bar is 11.15 m/s 2, 1.14 times the surface gravity of Earth, [71] and surpassed only by Jupiter. [72] Neptune's equatorial radius of 24,764 km [11] is nearly four ...
The motion of these objects is usually calculated from Newton's laws of motion and the law of universal gravitation. Orbital mechanics is a core discipline within space-mission design and control. Celestial mechanics treats more broadly the orbital dynamics of systems under the influence of gravity , including both spacecraft and natural ...
The speed of the planet in the main orbit is constant. Despite being correct in saying that the planets revolved around the Sun, Copernicus was incorrect in defining their orbits. Introducing physical explanations for movement in space beyond just geometry, Kepler correctly defined the orbit of planets as follows: [ 1 ] [ 2 ] [ 5 ] : 53–54
A celestial object's axial tilt indicates whether the object's rotation is prograde or retrograde. Axial tilt is the angle between an object's rotation axis and a line perpendicular to its orbital plane passing through the object's centre. An object with an axial tilt up to 90 degrees is rotating in the same direction as its primary.
In astronomy, a resonant trans-Neptunian object is a trans-Neptunian object (TNO) in mean-motion orbital resonance with Neptune.The orbital periods of the resonant objects are in a simple integer relations with the period of Neptune, e.g. 1:2, 2:3, etc. Resonant TNOs can be either part of the main Kuiper belt population, or the more distant scattered disc population.
In the Hipparchian, Ptolemaic, and Copernican systems of astronomy, the epicycle (from Ancient Greek ἐπίκυκλος (epíkuklos) 'upon the circle', meaning "circle moving on another circle") [1] was a geometric model used to explain the variations in speed and direction of the apparent motion of the Moon, Sun, and planets.
Typically, the stated rotation period for a giant planet (such as Jupiter, Saturn, Uranus, Neptune) is its internal rotation period, as determined from the rotation of the planet's magnetic field. For objects that are not spherically symmetrical, the rotation period is, in general, not fixed, even in the absence of gravitational or tidal forces
In the case of Mercury, half of the greater axis is about 5.79 × 10 10 m, the eccentricity of its orbit is 0.206 and the period of revolution 87.97 days or 7.6 × 10 6 s. From these and the speed of light (which is ~ 3 × 10 8 m/s ), it can be calculated that the apsidal precession during one period of revolution is ε = 5.028 × 10 −7 ...