Search results
Results from the WOW.Com Content Network
3-Methylhexane is a branched hydrocarbon with two enantiomers. [2] It is one of the isomers of heptane. The molecule is chiral, and is one of the two isomers of heptane to have this property, the other being its structural isomer 2,3-dimethylpentane. The enantiomers are (R)-3-methylhexane [3] and (S)-3-methylhexane. [4]
In chemistry, the haloform reaction (also referred to as the Lieben haloform reaction) is a chemical reaction in which a haloform (CHX 3, where X is a halogen) is produced by the exhaustive halogenation of an acetyl group (R−C(=O)CH 3, where R can be either a hydrogen atom, an alkyl or an aryl group), in the presence of a base.
C 3 H 5-Cl + NaF → R-F + NaCl This kind of reaction is called Finkelstein reaction . [ 2 ] However, it is also possible, for example, to produce phosphorus fluoride compounds by transhalogenating chlorine, bromine or iodine bound to phosphorus with a metal fluoride.
Halogenation of benzene where X is the halogen, catalyst represents the catalyst (if needed) and HX represents the protonated base. A few types of aromatic compounds, such as phenol , will react without a catalyst , but for typical benzene derivatives with less reactive substrates, a Lewis acid is required as a catalyst .
By reaction with tertiary amines, long-chain alkyl bromides such as 1-bromododecane, give quaternary ammonium salts, which are used as phase transfer catalysts. [ 9 ] With Michael acceptors the addition is also anti-Markovnikov because now a nucleophilic X − reacts in a nucleophilic conjugate addition for example in the reaction of HCl with ...
An example of the Hell–Volhard–Zelinsky reaction can be seen in the preparation of alanine from propionic acid.In the first step, a combination of bromine and phosphorus tribromide is used in the Hell–Volhard–Zelinsky reaction to prepare 2-bromopropionic acid, [3] which in the second step is converted to a racemic mixture of the amino acid product by ammonolysis.
In addition to infinite dilution, MOSCED can be used to parameterize excess Gibbs Free Energy model such as NRTL, WILSON, Mod-UNIFAC to map out Vapor Liquid Equilibria of mixture. This was demonstrated briefly by Schriber and Eckert [ 3 ] using infinite dilution data to parameterize WILSON equation.
Phase-field models are usually constructed in order to reproduce a given interfacial dynamics. For instance, in solidification problems the front dynamics is given by a diffusion equation for either concentration or temperature in the bulk and some boundary conditions at the interface (a local equilibrium condition and a conservation law), [14] which constitutes the sharp interface model.