enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Stoma - Wikipedia

    en.wikipedia.org/wiki/Stoma

    In botany, a stoma (pl.: stomata, from Greek στόμα, "mouth"), also called a stomate (pl.: stomates), is a pore found in the epidermis of leaves, stems, and other organs, that controls the rate of gas exchange between the internal air spaces of the leaf and the atmosphere.

  3. Epidermis (botany) - Wikipedia

    en.wikipedia.org/wiki/Epidermis_(botany)

    The stomata complex regulates the exchange of gases and water vapor between the outside air and the interior of the leaf. Typically, the stomata are more numerous over the abaxial (lower) epidermis of the leaf than the (adaxial) upper epidermis. An exception is floating leaves where most or all stomata are on the upper surface.

  4. Guard cell - Wikipedia

    en.wikipedia.org/wiki/Guard_cell

    Guard cells are cells surrounding each stoma. They help to regulate the rate of transpiration by opening and closing the stomata. Light is the main trigger for the opening or closing. [citation needed] Each guard cell has a relatively thick and thinner cuticle [clarification needed] on the pore-side and a thin one opposite it. As water enters ...

  5. Stroma (tissue) - Wikipedia

    en.wikipedia.org/wiki/Stroma_(tissue)

    Stroma (from Ancient Greek στρῶμα 'layer, bed, bed covering') is the part of a tissue or organ with a structural or connective role. It is made up of all the parts without specific functions of the organ - for example, connective tissue, blood vessels, ducts, etc.

  6. Stomatal conductance - Wikipedia

    en.wikipedia.org/wiki/Stomatal_conductance

    Stomatal conductance, usually measured in mmol m −2 s −1 by a porometer, estimates the rate of gas exchange (i.e., carbon dioxide uptake) and transpiration (i.e., water loss as water vapor) through the leaf stomata as determined by the degree of stomatal aperture (and therefore the physical resistances to the movement of gases between the air and the interior of the leaf).

  7. Xerophyte - Wikipedia

    en.wikipedia.org/wiki/Xerophyte

    In brief, the rate of transpiration is governed by the number of stomata, stomatal aperture i.e. the size of the stoma opening, leaf area (allowing for more stomata), temperature differential, the relative humidity, the presence of wind or air movement, the light intensity, and the presence of a waxy cuticle. It is important to note, that ...

  8. Transpiration - Wikipedia

    en.wikipedia.org/wiki/Transpiration

    Number of stomata: More stomata will provide more pores for transpiration. Size of the leaf: A leaf with a bigger surface area will transpire faster than a leaf with a smaller surface area. Presence of plant cuticle: A waxy cuticle is relatively impermeable to water and water vapor and reduces evaporation from the plant surface except via the ...

  9. Leaf - Wikipedia

    en.wikipedia.org/wiki/Leaf

    The pores or stomata of the epidermis open into substomatal chambers, which are connected to the intercellular air spaces between the spongy and palisade mesophyll cell, so that oxygen, carbon dioxide and water vapor can diffuse into and out of the leaf and access the mesophyll cells during respiration, photosynthesis and transpiration.