enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Gravity of Earth - Wikipedia

    en.wikipedia.org/wiki/Gravity_of_Earth

    The gravity g′ at depth d is given by g′ = g(1 − d/R) where g is acceleration due to gravity on the surface of the Earth, d is depth and R is the radius of the Earth. If the density decreased linearly with increasing radius from a density ρ 0 at the center to ρ 1 at the surface, then ρ ( r ) = ρ 0 − ( ρ 0 − ρ 1 ) r / R , and the ...

  3. Standard gravitational parameter - Wikipedia

    en.wikipedia.org/wiki/Standard_gravitational...

    Sagitov (1969) cites a range of values reported from 1960s high-precision measurements, with a relative uncertainty of the order of 10 −6. [ 14 ] During the 1970s to 1980s, the increasing number of artificial satellites in Earth orbit further facilitated high-precision measurements, and the relative uncertainty was decreased by another three ...

  4. Standard gravity - Wikipedia

    en.wikipedia.org/wiki/Standard_gravity

    [1] [2] The acceleration of a body near the surface of the Earth is due to the combined effects of gravity and centrifugal acceleration from the rotation of the Earth (but the latter is small enough to be negligible for most purposes); the total (the apparent gravity) is about 0.5% greater at the poles than at the Equator. [3] [4]

  5. Equations for a falling body - Wikipedia

    en.wikipedia.org/wiki/Equations_for_a_falling_body

    Based on wind resistance, for example, the terminal velocity of a skydiver in a belly-to-earth (i.e., face down) free-fall position is about 195 km/h (122 mph or 54 m/s). [3] This velocity is the asymptotic limiting value of the acceleration process, because the effective forces on the body balance each other more and more closely as the ...

  6. Gravitational acceleration - Wikipedia

    en.wikipedia.org/wiki/Gravitational_acceleration

    At a fixed point on the surface, the magnitude of Earth's gravity results from combined effect of gravitation and the centrifugal force from Earth's rotation. [ 2 ] [ 3 ] At different points on Earth's surface, the free fall acceleration ranges from 9.764 to 9.834 m/s 2 (32.03 to 32.26 ft/s 2 ), [ 4 ] depending on altitude , latitude , and ...

  7. Gal (unit) - Wikipedia

    en.wikipedia.org/wiki/Gal_(unit)

    In SI base units, 1 Gal is equal to 0.01 m/s 2. The acceleration due to Earth's gravity at its surface is 976 to 983 Gal, the variation being due mainly to differences in latitude and elevation . Standard gravity is 980.665 Gal. Mountains and masses of lesser density within the Earth's crust typically cause variations in gravitational ...

  8. Geopotential spherical harmonic model - Wikipedia

    en.wikipedia.org/wiki/Geopotential_spherical...

    For example, at a radius of 6600 km (about 200 km above Earth's surface) J 3 /(J 2 r) is about 0.002; i.e., the correction to the "J 2 force" from the "J 3 term" is in the order of 2 permille. The negative value of J 3 implies that for a point mass in Earth's equatorial plane the gravitational force is tilted slightly towards the south due to ...

  9. Orders of magnitude (length) - Wikipedia

    en.wikipedia.org/wiki/Orders_of_magnitude_(length)

    1.280 km – span of the Golden Gate Bridge (distance between towers) [138] 1.609 km1 statute mile; 1.852 km1 nautical mile, equal to 1 arcminute of latitude at the surface of the Earth [139] 1.991 km – span of the Akashi Kaikyō Bridge [140] 2.309 km – axial length of the Three Gorges Dam, the largest dam in the world located in ...