Search results
Results from the WOW.Com Content Network
Ultrasound is defined by the American National Standards Institute as "sound at frequencies greater than 20 kHz". In air at atmospheric pressure, ultrasonic waves have wavelengths of 1.9 cm or less. Ultrasound can be generated at very high frequencies; ultrasound is used for sonochemistry at frequencies up to multiple hundreds of kilohertz.
The 22-kHz vocalizations of adults and the 40-kHz vocalizations of pups are emitted in response to aversive situations or noxious stimuli. [8] For example, isolation, aggression between males, appearance of predators , surprising noises and inescapable foot shocks would elicit these vocalizations. [ 8 ]
Ultrasound energy, simply known as ultrasound, is a type of mechanical energy called sound characterized by vibrating or moving particles within a medium. Ultrasound is distinguished by vibrations with a frequency greater than 20,000 Hz, compared to audible sounds that humans typically hear with frequencies between 20 and 20,000 Hz.
This method of medical ultrasound therapy can be used for various types of pain relief and physical therapy. In physics, the term "ultrasound" [1] applies to all acoustic energy with a frequency above the audible range of human hearing. The audible range of sound is 20 hertz – 20 kilohertz. Ultrasound frequency is greater than 20 kilohertz.
For frequencies of ultrasound from 25 to 50 kHz, a guideline of 110 dB had been recommended by Canada, Japan, the USSR, and the International Radiation Protection Agency, and 115 dB by Sweden [24] in the late 1970s to early 1980s, but these were primarily based on subjective effects. The more recent OSHA guidelines above are based on ACGIH ...
The ultrasound probe emits a high-frequency sound wave (usually a multiple of 2 MHz) that bounces off various substances in the body. These echoes are detected by a sensor in the probe. In the case of blood in an artery, the echoes have different frequencies depending on the direction and speed of the blood because of the Doppler effect. [2]
Ultrasound can ablate tumors or other tissue non-invasively. [4] This is accomplished using a technique known as high intensity focused ultrasound (HIFU), also called focused ultrasound surgery. This procedure uses generally lower frequencies than medical diagnostic ultrasound (250–2000 kHz), but significantly higher time-averaged intensities.
By changing the pulse delays, the computer can scan the beam of ultrasound in a raster pattern across the tissue. Echoes reflected by different density tissue, received by the transducers, build up an image of the underlying structures. Weld examination by phased array. TOP: The phased array probe emits a series of beams to flood the weld with ...