enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Euler's formula - Wikipedia

    en.wikipedia.org/wiki/Euler's_formula

    The formula is still valid if x is a complex number, and is also called Euler's formula in this more general case. [1] Euler's formula is ubiquitous in mathematics, physics, chemistry, and engineering. The physicist Richard Feynman called the equation "our jewel" and "the most remarkable formula in mathematics". [2]

  3. Leonhard Euler - Wikipedia

    en.wikipedia.org/wiki/Leonhard_Euler

    Euler is regarded as arguably the most prolific contributor in the history of mathematics and science, and the greatest mathematician of the 18th century. [12] [11] His 866 publications and his correspondence are being collected in the Opera Omnia Leonhard Euler which, when completed, will consist of 81 quartos.

  4. Euler equations (fluid dynamics) - Wikipedia

    en.wikipedia.org/wiki/Euler_equations_(fluid...

    In fluid dynamics, the Euler equations are a set of partial differential equations governing adiabatic and inviscid flow. They are named after Leonhard Euler. In particular, they correspond to the Navier–Stokes equations with zero viscosity and zero thermal conductivity. [1] The Euler equations can be applied to incompressible and ...

  5. e (mathematical constant) - Wikipedia

    en.wikipedia.org/wiki/E_(mathematical_constant)

    The number e is a mathematical constant approximately equal to 2.71828 that is the base of the natural logarithm and exponential function.It is sometimes called Euler's number, after the Swiss mathematician Leonhard Euler, though this can invite confusion with Euler numbers, or with Euler's constant, a different constant typically denoted .

  6. Euler's theorem - Wikipedia

    en.wikipedia.org/wiki/Euler's_theorem

    In 1736, Leonhard Euler published a proof of Fermat's little theorem [1] (stated by Fermat without proof), which is the restriction of Euler's theorem to the case where n is a prime number. Subsequently, Euler presented other proofs of the theorem, culminating with his paper of 1763, in which he proved a generalization to the case where n is ...

  7. Proof of the Euler product formula for the Riemann zeta ...

    en.wikipedia.org/wiki/Proof_of_the_Euler_product...

    Leonhard Euler proved the Euler product formula for the Riemann zeta function in his thesis Variae observationes circa series infinitas (Various Observations about Infinite Series), published by St Petersburg Academy in 1737. [1] [2]

  8. Calculus of variations - Wikipedia

    en.wikipedia.org/wiki/Calculus_of_Variations

    According to the fundamental lemma of calculus of variations, the part of the integrand in parentheses is zero, i.e. ′ = which is called the Euler–Lagrange equation. The left hand side of this equation is called the functional derivative of J [ f ] {\displaystyle J[f]} and is denoted δ J {\displaystyle \delta J} or δ f ( x ...

  9. Introductio in analysin infinitorum - Wikipedia

    en.wikipedia.org/wiki/Introductio_in_analysin...

    Introductio in analysin infinitorum (Latin: [1] Introduction to the Analysis of the Infinite) is a two-volume work by Leonhard Euler which lays the foundations of mathematical analysis. Written in Latin and published in 1748, the Introductio contains 18 chapters in the first part and 22 chapters in the second.