Search results
Results from the WOW.Com Content Network
Generally, locks are advisory locks, where each thread cooperates by acquiring the lock before accessing the corresponding data. Some systems also implement mandatory locks, where attempting unauthorized access to a locked resource will force an exception in the entity attempting to make the access. The simplest type of lock is a binary ...
In computer science, a semaphore is a variable or abstract data type used to control access to a common resource by multiple threads and avoid critical section problems in a concurrent system such as a multitasking operating system. Semaphores are a type of synchronization primitive. A trivial semaphore is a plain variable that is changed (for ...
In computing, a futex (short for "fast userspace mutex") is a kernel system call that programmers can use to implement basic locking, or as a building block for higher-level locking abstractions such as semaphores and POSIX mutexes or condition variables. A futex consists of a kernel-space wait queue that is attached to an atomic integer in ...
There are two types of (file) lock; read-only and read–write. Read-only locks may be obtained by many processes or threads. Readers–writer locks are exclusive, as they may only be used by a single process/thread at a time. Although locks were derived for file databases, data is also shared in memory between processes and threads.
To enter a critical section, a thread must obtain a semaphore, which it releases on leaving the section. Other threads are prevented from entering the critical section at the same time as the original thread, but are free to gain control of the CPU and execute other code, including other critical sections that are protected by different semaphores.
This is accomplished by forcing every reader to lock and release the readtry semaphore individually. The writers on the other hand don't need to lock it individually. Only the first writer will lock the readtry and then all subsequent writers can simply use the resource as it gets freed by the previous writer.
The downside is that write-preferring locks allows for less concurrency in the presence of writer threads, compared to read-preferring RW locks. Also the lock is less performant because each operation, taking or releasing the lock for either read or write, is more complex, internally requiring taking and releasing two mutexes instead of one.
When a processor has obtained a lock, all other processors which also wish to obtain the same lock keep trying to obtain the lock by initiating bus transactions repeatedly until they get hold of the lock. This increases the bus traffic requirement of test-and-set significantly. This slows down all other traffic from cache and coherence misses ...