Search results
Results from the WOW.Com Content Network
Ab initio quantum chemistry methods are a class of computational chemistry techniques based on quantum chemistry that aim to solve the electronic Schrödinger equation. [1] Ab initio means "from first principles" or "from the beginning", meaning using only physical constants [2] and the positions and number of electrons in the system as input.
In the water molecule for example, ab initio calculations show bonding character primarily in two molecular orbitals, each with electron density equally distributed among the two O-H bonds. The localized orbital corresponding to one O-H bond is the sum of these two delocalized orbitals, and the localized orbital for the other O-H bond is their ...
SIESTA (Spanish Initiative for Electronic Simulations with Thousands of Atoms) is an original method and its computer program implementation, to efficiently perform electronic structure calculations and ab initio molecular dynamics simulations of molecules and solids.
The electronic structure of an atom or molecule is the quantum state of its electrons. [13] The first step in solving a quantum chemical problem is usually solving the Schrödinger equation (or Dirac equation in relativistic quantum chemistry ) with the electronic molecular Hamiltonian , usually making use of the Born–Oppenheimer (B–O ...
This rigorous approach is known as the Hartree–Fock method for molecules although it had its origins in calculations on atoms. In calculations on molecules, the molecular orbitals are expanded in terms of an atomic orbital basis set, leading to the Roothaan equations. [15] This led to the development of many ab initio quantum chemistry methods.
Density functional theory (DFT) is a computational quantum mechanical modelling method used in physics, chemistry and materials science to investigate the electronic structure (or nuclear structure) (principally the ground state) of many-body systems, in particular atoms, molecules, and the condensed phases.
Gaussian / ˈ ɡ aʊ s i ə n / is a general purpose computational chemistry software package initially released in 1970 by John Pople [1] [2] and his research group at Carnegie Mellon University as Gaussian 70. [3]
In theoretical and computational chemistry, a basis set is a set of functions (called basis functions) that is used to represent the electronic wave function in the Hartree–Fock method or density-functional theory in order to turn the partial differential equations of the model into algebraic equations suitable for efficient implementation on a computer.