Search results
Results from the WOW.Com Content Network
A precision-recall curve plots precision as a function of recall; usually precision will decrease as the recall increases. Alternatively, values for one measure can be compared for a fixed level at the other measure (e.g. precision at a recall level of 0.75) or both are combined into a single measure.
Accuracy is also used as a statistical measure of how well a binary classification test correctly identifies or excludes a condition. That is, the accuracy is the proportion of correct predictions (both true positives and true negatives) among the total number of cases examined. [10]
In statistics, the precision matrix or concentration matrix is the matrix inverse of the covariance matrix or dispersion matrix, =. [ 1 ] [ 2 ] [ 3 ] For univariate distributions , the precision matrix degenerates into a scalar precision , defined as the reciprocal of the variance , p = 1 σ 2 {\displaystyle p={\frac {1}{\sigma ^{2}}}} .
Precision and recall. In statistical analysis of binary classification and information retrieval systems, the F-score or F-measure is a measure of predictive performance. It is calculated from the precision and recall of the test, where the precision is the number of true positive results divided by the number of all samples predicted to be positive, including those not identified correctly ...
Prevalence has a significant impact on prediction values. As an example, suppose there is a test for a disease with 99% sensitivity and 99% specificity. If 2000 people are tested and the prevalence (in the sample) is 50%, 1000 of them are sick and 1000 of them are healthy.
Precision takes all retrieved documents into account. It can also be evaluated considering only the topmost results returned by the system using Precision@k. Note that the meaning and usage of "precision" in the field of information retrieval differs from the definition of accuracy and precision within other branches of science and statistics.
The table shown on the right can be used in a two-sample t-test to estimate the sample sizes of an experimental group and a control group that are of equal size, that is, the total number of individuals in the trial is twice that of the number given, and the desired significance level is 0.05. [4]
False precision (also called overprecision, fake precision, misplaced precision, and spurious precision) occurs when numerical data are presented in a manner that implies better precision than is justified; since precision is a limit to accuracy (in the ISO definition of accuracy), this often leads to overconfidence in the accuracy, named precision bias.