Search results
Results from the WOW.Com Content Network
In queueing theory, a discipline within the mathematical theory of probability, a Markovian arrival process (MAP or MArP [1]) is a mathematical model for the time between job arrivals to a system. The simplest such process is a Poisson process where the time between each arrival is exponentially distributed. [2] [3]
Kingman's formula gives an approximation for the mean waiting time in a G/G/1 queue. [6] Lindley's integral equation is a relationship satisfied by the stationary waiting time distribution which can be solved using the Wiener–Hopf method. [7]
In queueing theory, the Engset formula is used to determine the blocking probability of an M/M/c/c/N queue (in Kendall's notation). The formula is named after its developer, T. O. Engset . Example application
A M/M/1 queue means that the time between arrivals is Markovian (M), i.e. the inter-arrival time follows an exponential distribution of parameter λ. The second M means that the service time is Markovian: it follows an exponential distribution of parameter μ. The last parameter is the number of service channel which one (1).
In mathematical queueing theory, Little's law (also result, theorem, lemma, or formula [1] [2]) is a theorem by John Little which states that the long-term average number L of customers in a stationary system is equal to the long-term average effective arrival rate λ multiplied by the average time W that a customer spends in the system.
In queueing theory, a discipline within the mathematical theory of probability, an M/G/1 queue is a queue model where arrivals are Markovian (modulated by a Poisson process), service times have a General distribution and there is a single server. [1]
The matrix geometric method and matrix analytic methods have allowed queues with phase-type distributed inter-arrival and service time distributions to be considered. [18] Systems with coupled orbits are an important part in queueing theory in the application to wireless networks and signal processing. [19]
Service times have an exponential distribution with rate parameter μ in the M/M/1 queue, where 1/μ is the mean service time. All arrival times and services times are (usually) assumed to be independent of one another. [2] A single server serves customers one at a time from the front of the queue, according to a first-come, first-served ...