enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Factorization of polynomials over finite fields - Wikipedia

    en.wikipedia.org/wiki/Factorization_of...

    Irreducible polynomials over finite fields are also useful for pseudorandom number generators using feedback shift registers and discrete logarithm over F 2 n. The number of irreducible monic polynomials of degree n over F q is the number of aperiodic necklaces, given by Moreau's necklace-counting function M q (n). The closely related necklace ...

  3. Finite field - Wikipedia

    en.wikipedia.org/wiki/Finite_field

    As 2 and 3 are coprime, the intersection of GF(4) and GF(8) in GF(64) is the prime field GF(2). The union of GF(4) and GF(8) has thus 10 elements. The remaining 54 elements of GF(64) generate GF(64) in the sense that no other subfield contains any of them. It follows that they are roots of irreducible polynomials of degree 6 over GF(2).

  4. Primitive polynomial (field theory) - Wikipedia

    en.wikipedia.org/wiki/Primitive_polynomial...

    An irreducible polynomial F(x) of degree m over GF(p), where p is prime, is a primitive polynomial if the smallest positive integer n such that F(x) divides x n − 1 is n = p m − 1. A primitive polynomial of degree m has m different roots in GF(p m), which all have order p m − 1, meaning that any of them generates the multiplicative group ...

  5. Irreducibility (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Irreducibility_(mathematics)

    Irreducibility (mathematics) In mathematics, the concept of irreducibility is used in several ways. A polynomial over a field may be an irreducible polynomial if it cannot be factored over that field. In abstract algebra, irreducible can be an abbreviation for irreducible element of an integral domain; for example an irreducible polynomial.

  6. Gauss's lemma (polynomials) - Wikipedia

    en.wikipedia.org/wiki/Gauss's_lemma_(polynomials)

    (A polynomial with integer coefficients is primitive if it has 1 as a greatest common divisor of its coefficients. [note 2]) A corollary of Gauss's lemma, sometimes also called Gauss's lemma, is that a primitive polynomial is irreducible over the integers if and only if it is irreducible over the rational numbers. More generally, a primitive ...

  7. Primitive element theorem - Wikipedia

    en.wikipedia.org/wiki/Primitive_element_theorem

    Theorem statement. The primitive element theorem states: Every separable field extension of finite degree is simple. This theorem applies to algebraic number fields, i.e. finite extensions of the rational numbers Q, since Q has characteristic 0 and therefore every finite extension over Q is separable. Using the fundamental theorem of Galois ...

  8. Minimal polynomial (field theory) - Wikipedia

    en.wikipedia.org/wiki/Minimal_polynomial_(field...

    The minimal polynomial f of α is irreducible, i.e. it cannot be factorized as f = gh for two polynomials g and h of strictly lower degree. To prove this, first observe that any factorization f = gh implies that either g ( α ) = 0 or h ( α ) = 0, because f ( α ) = 0 and F is a field (hence also an integral domain ).

  9. Polynomial greatest common divisor - Wikipedia

    en.wikipedia.org/wiki/Polynomial_greatest_common...

    hide. In algebra, the greatest common divisor (frequently abbreviated as GCD) of two polynomials is a polynomial, of the highest possible degree, that is a factor of both the two original polynomials. This concept is analogous to the greatest common divisor of two integers. In the important case of univariate polynomials over a field the ...