enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Rarefaction - Wikipedia

    en.wikipedia.org/wiki/Rarefaction

    Rarefaction is the reduction of an item's density, the opposite of compression. [1] Like compression, which can travel in waves (sound waves, for instance), rarefaction waves also exist in nature. A common rarefaction wave is the area of low relative pressure following a shock wave (see picture). Rarefaction waves expand with time (much like ...

  3. Rarefaction (ecology) - Wikipedia

    en.wikipedia.org/wiki/Rarefaction_(ecology)

    Rarefaction (ecology) In ecology, rarefaction is a technique to assess species richness from the results of sampling. Rarefaction allows the calculation of species richness for a given number of individual samples, based on the construction of so-called rarefaction curves. This curve is a plot of the number of species as a function of the ...

  4. Redshift - Wikipedia

    en.wikipedia.org/wiki/Redshift

    v. t. e. In physics, a redshift is an increase in the wavelength, and corresponding decrease in the frequency and photon energy, of electromagnetic radiation (such as light). The opposite change, a decrease in wavelength and increase in frequency and energy, is known as a blueshift, or negative redshift.

  5. Standing wave - Wikipedia

    en.wikipedia.org/wiki/Standing_wave

    Standing wave. Animation of a standing wave (red) created by the superposition of a left traveling (blue) and right traveling (green) wave. In physics, a standing wave, also known as a stationary wave, is a wave that oscillates in time but whose peak amplitude profile does not move in space. The peak amplitude of the wave oscillations at any ...

  6. Oscillation (cell signaling) - Wikipedia

    en.wikipedia.org/wiki/Oscillation_(cell_signaling)

    Oscillations are an important type of cell signaling characterized by the periodic change of the system in time. [1] Oscillations can take place in a biological system in a multitude of ways. Positive feedback loops, on their own or in combination with negative feedback are a common feature of oscillating biological systems.

  7. Electroreception and electrogenesis - Wikipedia

    en.wikipedia.org/wiki/Electroreception_and...

    An electric fish generates an electric field using an electric organ, modified from muscles in its tail. The field is called weak if it is only enough to detect prey, and strong if it is powerful enough to stun or kill. The field may be in brief pulses, as in the elephantfishes, or a continuous wave, as in the knifefishes.

  8. Reaction–diffusion system - Wikipedia

    en.wikipedia.org/wiki/Reaction–diffusion_system

    Reaction–diffusion systems are naturally applied in chemistry. However, the system can also describe dynamical processes of non-chemical nature. Examples are found in biology, geology and physics (neutron diffusion theory) and ecology. Mathematically, reaction–diffusion systems take the form of semi-linear parabolic partial differential ...

  9. Longitudinal wave - Wikipedia

    en.wikipedia.org/wiki/Longitudinal_wave

    A wave along the length of a stretched Slinky toy, where the distance between coils increases and decreases, is a good visualization. Real-world examples include sound waves (vibrations in pressure, a particle of displacement, and particle velocity propagated in an elastic medium) and seismic P-waves (created by earthquakes and explosions).