Search results
Results from the WOW.Com Content Network
English: Functional proteins have four levels of structural organization: 1) Primary Structure : the linear structure of amino acids in the polypeptide chain 2) Secondary Structure : hydrogen bonds between peptide group chains in an alpha helix or beta 3) Tertiary Structure : three-dimensional structure of alpha helixes and beta helixes folded
Biomolecular structure is the intricate folded, three-dimensional shape that is formed by a molecule of protein, DNA, or RNA, and that is important to its function.The structure of these molecules may be considered at any of several length scales ranging from the level of individual atoms to the relationships among entire protein subunits.
Pymol-generated image of E1 subunit of pyruvate dehydrogenase complex in E. Coli. The E1 subunit, called the pyruvate dehydrogenase subunit, is either a homodimer (comprising two “α” chains, e.g. in Escherichia coli) or a heterotetramer of two different chains (two “α” and two “β” chains).
Protein structure is the three-dimensional arrangement of atoms in an amino acid-chain molecule. Proteins are polymers – specifically polypeptides – formed from sequences of amino acids, which are the monomers of the polymer. A single amino acid monomer may also be called a residue, which indicates a repeating unit of a polymer.
The particular series of amino acids that form a protein is known as that protein's primary structure. This sequence is determined by the genetic makeup of the individual. It specifies the order of side-chain groups along the linear polypeptide "backbone".
Proteins are often synthesized in an inactive precursor form; typically, an N-terminal or C-terminal segment blocks the active site of the protein, inhibiting its function. The protein is activated by cleaving off the inhibitory peptide. Some proteins even have the power to cleave themselves.
In biology literature, the term topology is also used to refer to mutual orientation of regular secondary structures, such as alpha-helices and beta strands in protein structure [3]. For example, two adjacent interacting alpha-helices or beta-strands can go in the same or in opposite directions.
Absorbed amino acids are typically used to create functional proteins, but may also be used to create energy. [3] They can also be converted into glucose. [4] This glucose can then be converted to triglycerides and stored in fat cells. [5] Proteins can be broken down by enzymes known as peptidases or can break down as a result of denaturation ...