Search results
Results from the WOW.Com Content Network
The complexity class PCP c(n), s(n) [r(n), q(n)] is the class of all decision problems having probabilistically checkable proof systems over binary alphabet of completeness c(n) and soundness s(n), where the verifier is nonadaptive, runs in polynomial time, and it has randomness complexity r(n) and query complexity q(n).
The PCP theorem states that NP = PCP[O(log n), O(1)],. where PCP[r(n), q(n)] is the class of problems for which a probabilistically checkable proof of a solution can be given, such that the proof can be checked in polynomial time using r(n) bits of randomness and by reading q(n) bits of the proof, correct proofs are always accepted, and incorrect proofs are rejected with probability at least 1/2.
All polylogarithmic functions of n are o(n ε) for every exponent ε > 0 (for the meaning of this symbol, see small o notation), that is, a polylogarithmic function grows more slowly than any positive exponent. This observation is the basis for the soft O notation Õ(n). [3]
Graphs of functions commonly used in the analysis of algorithms, showing the number of operations N as the result of input size n for each function. In theoretical computer science, the time complexity is the computational complexity that describes the amount of computer time it takes to run an algorithm.
The analysis of the former and the latter algorithm shows that it takes at most log 2 n and n check steps, respectively, for a list of size n. In the depicted example list of size 33, searching for "Morin, Arthur" takes 5 and 28 steps with binary (shown in cyan) and linear (magenta) search, respectively.
To show that NL is contained in C, we simply take an NL algorithm and choose a random computation path of length n, and execute this 2 n times. Because no computation path exceeds length n, and because there are 2 n computation paths in all, we have a good chance of hitting the accepting one (bounded below by a constant).
The worst-case complexity is the maximum of the complexity over all inputs of size n, and the average-case complexity is the average of the complexity over all inputs of size n (this makes sense, as the number of possible inputs of a given size is finite). Generally, when "complexity" is used without being further specified, this is the worst ...
Here, complexity refers to the time complexity of performing computations on a multitape Turing machine. [1] See big O notation for an explanation of the notation used. Note: Due to the variety of multiplication algorithms, M ( n ) {\displaystyle M(n)} below stands in for the complexity of the chosen multiplication algorithm.