Search results
Results from the WOW.Com Content Network
The deep chlorophyll maximum (DCM), also called the subsurface chlorophyll maximum, [1] [2] is the region below the surface of water with the maximum concentration of chlorophyll. The DCM generally exists at the same depth as the nutricline, the region of the ocean where the greatest change in the nutrient concentration occurs with depth. [3]
The reaction begins with the excitation of a pair of chlorophyll molecules similar to those in the bacterial reaction center. Due to the presence of chlorophyll a, as opposed to bacteriochlorophyll, Photosystem II absorbs light at a shorter wavelength. The pair of chlorophyll molecules at the reaction center are often referred to as P680. [1]
Chlorophyll forms deep green solutions in organic solvents. Chlorophylls can be extracted from the protein into organic solvents. [21] [22] [23] In this way, the concentration of chlorophyll within a leaf can be estimated. [24] Methods also exist to separate chlorophyll a and chlorophyll b.
For example, Ware and Thomson (2005) found an r 2 of 0.87 between resident fish yield (metric tons km-2) and mean annual chlorophyll a concentrations (mg m-3). [13] Others have found the Pacific's Transition Zone Chlorophyll Front (chlorophyll density of 0.2 mg m-3) to be defining feature in loggerhead turtle distribution.
Typical examples include the Leaf Area Index, biomass, chlorophyll concentration in leaves, plant productivity, fractional vegetation cover, accumulated rainfall, etc. Such relations are often derived by correlating space-derived NDVI values with ground-measured values of these variables.
Chlorophyll-a concentration is sometimes used to measure water clarity, especially when suspended sediments and colored dissolved organic matter concentrations are low. Chlorophyll-a concentration is a proxy for phytoplankton biomass, which is one way to quantify how turbid the water is due to biological primary production .
Ocean chlorophyll concentration is a proxy for phytoplankton biomass. In this map, blue colors represent lower chlorophyll and reds represent higher chlorophyll. Satellite-measured chlorophyll is estimated based on ocean color by how green the color of the water appears from space.
His work was extrapolated to other HNLC regions through evidence which linked low surface iron concentration with low chlorophyll. [6] In response to iron fertilization experiments (IronEx, SOIREE, SEEDS, etc.) in HNLC areas, large phytoplankton responses such as decreased surface nutrient concentration and increased biological activity were ...