Search results
Results from the WOW.Com Content Network
A person flying at 9,100 m (30,000 ft) above sea level over mountains will feel more gravity than someone at the same elevation but over the sea. However, a person standing on the Earth's surface feels less gravity when the elevation is higher. The following formula approximates the Earth's gravity variation with altitude:
In physics, gravity (from Latin gravitas 'weight' [1]) is a fundamental interaction primarily observed as a mutual attraction between all things that have mass.Gravity is, by far, the weakest of the four fundamental interactions, approximately 10 38 times weaker than the strong interaction, 10 36 times weaker than the electromagnetic force, and 10 29 times weaker than the weak interaction.
Earth's density varies considerably, between less than 2700 kg/m 3 in the upper crust to as much as 13 000 kg/m 3 in the inner core. [13] The Earth's core accounts for 15% of Earth's volume but more than 30% of the mass, the mantle for 84% of the volume and close to 70% of the mass, while the crust accounts for less than 1% of the mass. [13]
The Schiehallion experiment, proposed in 1772 and completed in 1776, was the first successful measurement of the mean density of the Earth, and thus indirectly of the gravitational constant. The result reported by Charles Hutton (1778) suggested a density of 4.5 g/cm 3 (4 + 1 / 2 times the density of water), about 20% below the modern ...
For instance, buoyancy's diminishing effect upon one's body weight (a relatively low-density object) is 1 ⁄ 860 that of gravity (for pure water it is about 1 ⁄ 770 that of gravity). Furthermore, variations in barometric pressure rarely affect a person's weight more than ±1 part in 30,000. [ 6 ]
At a fixed point on the surface, the magnitude of Earth's gravity results from combined effect of gravitation and the centrifugal force from Earth's rotation. [2] [3] At different points on Earth's surface, the free fall acceleration ranges from 9.764 to 9.834 m/s 2 (32.03 to 32.26 ft/s 2), [4] depending on altitude, latitude, and longitude.
Measurements of the force exerted by Earth's gravity can be used to calculate its mass. Astronomers can also calculate Earth's mass by observing the motion of orbiting satellites. Earth's average density can be determined through gravimetric experiments, which have historically involved pendulums. The mass of Earth is about 6 × 10 24 kg. [4]
If that sphere were then covered in water, the water would not be the same height everywhere. Instead, the water level would be higher or lower with respect to Earth's center, depending on the integral of the strength of gravity from the center of the Earth to that location. The geoid level coincides with where the water would be.