Search results
Results from the WOW.Com Content Network
Schematic of the Birkeland or Field-Aligned Currents and the ionospheric current systems they connect to, Pedersen and Hall currents. [1]A Birkeland current (also known as field-aligned current, FAC) is a set of electrical currents that flow along geomagnetic field lines connecting the Earth's magnetosphere to the Earth's high latitude ionosphere.
STORM comprehensively fills gaps in our current understanding of the solar wind-magnetosphere interaction by addressing the following science objectives: (A) energy transfer at the dayside magnetopause, (B) energy circulation and transfer through the magnetotail, (C) energy sources and sinks for the ring current, and (D) energy feedback from ...
Researchers have developed global models using MHD to simulate phenomena within Earth's magnetosphere, such as the location of Earth's magnetopause [24] (the boundary between the Earth's magnetic field and the solar wind), the formation of the ring current, auroral electrojets, [25] and geomagnetically induced currents.
In the height region between about 85 and 200 km altitude on Earth, the ionospheric plasma is electrically conducting. Atmospheric tidal winds due to differential solar heating or due to gravitational lunar forcing move the ionospheric plasma against the geomagnetic field lines thus generating electric fields and currents just like a dynamo coil moving against magnetic field lines.
Schematic view of the different current systems which shape the Earth's magnetosphere Trapping of plasma , e.g. of the ring current , also follows the structure of field lines. A particle interacting with this B field experiences a Lorentz Force which is responsible for many of the particle motion in the magnetosphere.
The plasmasphere, or inner magnetosphere, is a region of the Earth's magnetosphere consisting of low-energy (cool) plasma. It is located above the ionosphere . The outer boundary of the plasmasphere is known as the plasmapause , which is defined by an order of magnitude drop in plasma density.
Now when current is made to pass through the niobium coil (wrapped around tantalum) it produces a magnetic field, which in turn reduces (kills) the superconductivity of the tantalum wire and hence reduces the amount of the current that can flow through the tantalum wire. Hence one can control the amount of the current that can flow in the ...
The current density J is itself the result of the magnetic field according to Ohm's law. Again, due to matter motion and current flow, this is not necessarily the field at the same place and time. Again, due to matter motion and current flow, this is not necessarily the field at the same place and time.