enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Inverse probability weighting - Wikipedia

    en.wikipedia.org/wiki/Inverse_probability_weighting

    Inverse probability weighting. Inverse probability weighting is a statistical technique for estimating quantities related to a population other than the one from which the data was collected. Study designs with a disparate sampling population and population of target inference (target population) are common in application. [1]

  3. Importance sampling - Wikipedia

    en.wikipedia.org/wiki/Importance_sampling

    However, the simulation outputs are weighted to correct for the use of the biased distribution, and this ensures that the new importance sampling estimator is unbiased. The weight is given by the likelihood ratio, that is, the Radon–Nikodym derivative of the true underlying distribution with respect to the biased simulation distribution.

  4. Sample size determination - Wikipedia

    en.wikipedia.org/wiki/Sample_size_determination

    Sample size determination or estimation is the act of choosing the number of observations or replicates to include in a statistical sample. The sample size is an important feature of any empirical study in which the goal is to make inferences about a population from a sample. In practice, the sample size used in a study is usually determined ...

  5. Horvitz–Thompson estimator - Wikipedia

    en.wikipedia.org/wiki/Horvitz–Thompson_estimator

    In statistics, the Horvitz–Thompson estimator, named after Daniel G. Horvitz and Donovan J. Thompson, [1] is a method for estimating the total [2] and mean of a pseudo-population in a stratified sample by applying inverse probability weighting to account for the difference in the sampling distribution between the collected data and the a target population.

  6. Sampling (statistics) - Wikipedia

    en.wikipedia.org/wiki/Sampling_(statistics)

    Sampling (statistics) In statistics, quality assurance, and survey methodology, sampling is the selection of a subset or a statistical sample (termed sample for short) of individuals from within a statistical population to estimate characteristics of the whole population. The subset is meant to reflect the whole population and statisticians ...

  7. Expected value - Wikipedia

    en.wikipedia.org/wiki/Expected_value

    v. t. e. In probability theory, the expected value (also called expectation, expectancy, expectation operator, mathematical expectation, mean, expectation value, or first moment) is a generalization of the weighted average. Informally, the expected value is the mean of the possible values a random variable can take, weighted by the probability ...

  8. Weighted arithmetic mean - Wikipedia

    en.wikipedia.org/wiki/Weighted_arithmetic_mean

    The weighted arithmetic mean is similar to an ordinary arithmetic mean (the most common type of average), except that instead of each of the data points contributing equally to the final average, some data points contribute more than others. The notion of weighted mean plays a role in descriptive statistics and also occurs in a more general ...

  9. Inverse-variance weighting - Wikipedia

    en.wikipedia.org/wiki/Inverse-variance_weighting

    For normally distributed random variables inverse-variance weighted averages can also be derived as the maximum likelihood estimate for the true value. Furthermore, from a Bayesian perspective the posterior distribution for the true value given normally distributed observations and a flat prior is a normal distribution with the inverse-variance weighted average as a mean and variance ().