Search results
Results from the WOW.Com Content Network
Linear least squares (LLS) is the least squares approximation of linear functions to data. It is a set of formulations for solving statistical problems involved in linear regression, including variants for ordinary (unweighted), weighted, and generalized (correlated) residuals.
Unweighted, or "elementary", price indices only compare prices of a single type of good between two periods. They do not make any use of quantities or expenditure weights. They are called "elementary" because they are often used at the lower levels of aggregation for more comprehensive price indices. [2]
Weighted least squares (WLS), also known as weighted linear regression, [1] [2] is a generalization of ordinary least squares and linear regression in which knowledge of the unequal variance of observations (heteroscedasticity) is incorporated into the regression.
When treating the weights as constants, and having a sample of n observations from uncorrelated random variables, all with the same variance and expectation (as is the case for i.i.d random variables), then the variance of the weighted mean can be estimated as the multiplication of the unweighted variance by Kish's design effect (see proof):
A weighting curve is a graph of a set of factors, that are used to 'weight' measured values of a variable according to their importance in relation to some outcome. An important example is frequency weighting in sound level measurement where a specific set of weighting curves known as A-, B-, C-, and D-weighting as defined in IEC 61672 [1] are used.
The lower weighted median is 2 with partition sums of 0.49 and 0.5, and the upper weighted median is 3 with partition sums of 0.5 and 0.25. In the case of working with integers or non-interval measures, the lower weighted median would be accepted since it is the lower weight of the pair and therefore keeps the partitions most equal. However, it ...
As regards weighting, one can either weight all of the measured ages equally, or weight them by the proportion of the sample that they represent. For example, if two thirds of the sample was used for the first measurement and one third for the second and final measurement, then one might weight the first measurement twice that of the second.
Unit-weighted regression is a method of robust regression that proceeds in three steps. First, predictors for the outcome of interest are selected; ideally, there should be good empirical or theoretical reasons for the selection.