enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Escape velocity - Wikipedia

    en.wikipedia.org/wiki/Escape_velocity

    Escape speed at a distance d from the center of a spherically symmetric primary body (such as a star or a planet) with mass M is given by the formula [2] [3] = = where: G is the universal gravitational constant (G ≈ 6.67 × 10 −11 m 3 ⋅kg −1 ⋅s −2 ‍ [4])

  3. Tsiolkovsky rocket equation - Wikipedia

    en.wikipedia.org/wiki/Tsiolkovsky_rocket_equation

    A rocket's required mass ratio as a function of effective exhaust velocity ratio. The classical rocket equation, or ideal rocket equation is a mathematical equation that describes the motion of vehicles that follow the basic principle of a rocket: a device that can apply acceleration to itself using thrust by expelling part of its mass with high velocity and can thereby move due to the ...

  4. Atmospheric escape - Wikipedia

    en.wikipedia.org/wiki/Atmospheric_escape

    One classical thermal escape mechanism is Jeans escape, [1] named after British astronomer Sir James Jeans, who first described this process of atmospheric loss. [2] In a quantity of gas, the average velocity of any one molecule is measured by the gas's temperature, but the velocities of individual molecules change as they collide with one another, gaining and losing kinetic energy.

  5. Velocity - Wikipedia

    en.wikipedia.org/wiki/Velocity

    The general formula for the escape velocity of an object at a distance r from the center of a planet with mass M is [12] = =, where G is the gravitational constant and g is the gravitational acceleration. The escape velocity from Earth's surface is about 11 200 m/s, and is irrespective of the direction of the object.

  6. Specific orbital energy - Wikipedia

    en.wikipedia.org/wiki/Specific_orbital_energy

    It is related to the hyperbolic excess velocity (the orbital velocity at infinity) by = =. It is relevant for interplanetary missions. Thus, if orbital position vector ( r {\displaystyle \mathbf {r} } ) and orbital velocity vector ( v {\displaystyle \mathbf {v} } ) are known at one position, and μ {\displaystyle \mu } is known, then the energy ...

  7. Characteristic energy - Wikipedia

    en.wikipedia.org/wiki/Characteristic_energy

    In astrodynamics, the characteristic energy is a measure of the excess specific energy over that required to just barely escape from a massive body. The units are length 2 time −2, i.e. velocity squared, or energy per mass.

  8. AOL Mail

    mail.aol.com

    Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!

  9. Vis-viva equation - Wikipedia

    en.wikipedia.org/wiki/Vis-viva_equation

    In astrodynamics, the vis-viva equation is one of the equations that model the motion of orbiting bodies.It is the direct result of the principle of conservation of mechanical energy which applies when the only force acting on an object is its own weight which is the gravitational force determined by the product of the mass of the object and the strength of the surrounding gravitational field.