Search results
Results from the WOW.Com Content Network
Dopamine receptors are a class of G protein-coupled receptors that are prominent in the vertebrate central nervous system (CNS) and are implicated in many neurological processes, including motivational and incentive salience, cognition, memory, learning, and fine motor control, as well as modulation of neuroendocrine signaling.
Dopamine receptors are implicated in many neurological processes, including motivational and incentive salience, cognition, memory, learning, and fine motor control, as well as modulation of neuroendocrine signaling. Abnormal dopamine receptor signaling and dopaminergic nerve function is implicated in several neuropsychiatric disorders. [2]
The dopamine receptors are members of the G protein-coupled receptors superfamily with seven transmembrane domains. Dopamine receptors have five subtypes, D 1 through D 5, the subtypes can be divided into two subclasses due to their mechanism of action on adenylate cyclase enzyme, D 1-like receptors (D 1 and D 5) and D 2-like receptors (D 2, D ...
Pages in category "Dopamine receptors" The following 8 pages are in this category, out of 8 total. This list may not reflect recent changes. D. D1-like receptor;
D 1 receptor has a high degree of structural homology to another dopamine receptor, D 5, and they both bind similar drugs. [13] As a result, none of the known orthosteric ligands is selective for the D 1 vs. the D 5 receptor, but the benzazepines generally are more selective for the D 1 and D 5 receptors versus the D 2-like family. [12]
Some dopamine receptors are located in the walls of arteries, where they act as a vasodilator and an inhibitor of norepinephrine release from postganglionic sympathetic nerves terminals (dopamine can inhibit norepinephrine release by acting on presynaptic dopamine receptors, and also on presynaptic α-1 receptors, like norepinephrine itself). [75]
A dopamine reuptake inhibitor (DRI) is a class of drug which acts as a reuptake inhibitor of the monoamine neurotransmitter dopamine by blocking the action of the dopamine transporter (DAT). Reuptake inhibition is achieved when extracellular dopamine not absorbed by the postsynaptic neuron is blocked from re-entering the presynaptic neuron.
The dopamine neurons of the dopaminergic pathways synthesize and release the neurotransmitter dopamine. [2] [3] Enzymes tyrosine hydroxylase and dopa decarboxylase are required for dopamine synthesis. [4] These enzymes are both produced in the cell bodies of dopamine neurons. Dopamine is stored in the cytoplasm and vesicles in axon terminals.