enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Exact solutions of classical central-force problems - Wikipedia

    en.wikipedia.org/wiki/Exact_solutions_of...

    In the classical central-force problem of classical mechanics, some potential energy functions () produce motions or orbits that can be expressed in terms of well-known functions, such as the trigonometric functions and elliptic functions. This article describes these functions and the corresponding solutions for the orbits.

  3. Poincaré–Lindstedt method - Wikipedia

    en.wikipedia.org/wiki/Poincaré–Lindstedt_method

    In perturbation theory, the Poincaré–Lindstedt method or Lindstedt–Poincaré method is a technique for uniformly approximating periodic solutions to ordinary differential equations, when regular perturbation approaches fail.

  4. Classical central-force problem - Wikipedia

    en.wikipedia.org/.../Classical_central-force_problem

    The problem is also important because some more complicated problems in classical physics (such as the two-body problem with forces along the line connecting the two bodies) can be reduced to a central-force problem. Finally, the solution to the central-force problem often makes a good initial approximation of the true motion, as in calculating ...

  5. Three-body problem - Wikipedia

    en.wikipedia.org/wiki/Three-body_problem

    An animation of the figure-8 solution to the three-body problem over a single period T ≃ 6.3259 [13] 20 examples of periodic solutions to the three-body problem. In the 1970s, Michel Hénon and Roger A. Broucke each found a set of solutions that form part of the same family of solutions: the Broucke–Hénon–Hadjidemetriou family. In this ...

  6. Abraham–Lorentz force - Wikipedia

    en.wikipedia.org/wiki/Abraham–Lorentz_force

    The Lorentz self-force derived for non-relativistic velocity approximation , is given in SI units by: = ˙ = ˙ = ˙ or in Gaussian units by = ˙. where is the force, ˙ is the derivative of acceleration, or the third derivative of displacement, also called jerk, μ 0 is the magnetic constant, ε 0 is the electric constant, c is the speed of light in free space, and q is the electric charge of ...

  7. Euler's three-body problem - Wikipedia

    en.wikipedia.org/wiki/Euler's_three-body_problem

    The problem of two fixed centers conserves energy; in other words, the total energy is a constant of motion.The potential energy is given by =where represents the particle's position, and and are the distances between the particle and the centers of force; and are constants that measure the strength of the first and second forces, respectively.

  8. Mathieu function - Wikipedia

    en.wikipedia.org/wiki/Mathieu_function

    In some usages, Mathieu function refers to solutions of the Mathieu differential equation for arbitrary values of and .When no confusion can arise, other authors use the term to refer specifically to - or -periodic solutions, which exist only for special values of and . [5]

  9. Numerical continuation - Wikipedia

    en.wikipedia.org/wiki/Numerical_continuation

    A periodic motion is a closed curve in phase space. That is, for some period, ′ = (,), = (). The textbook example of a periodic motion is the undamped pendulum.. If the phase space is periodic in one or more coordinates, say () = (+), with a vector [clarification needed], then there is a second kind of periodic motions defined by