Search results
Results from the WOW.Com Content Network
The hydraulic diameter, D H, is a commonly used term when handling flow in non-circular tubes and channels. Using this term, one can calculate many things in the same way as for a round tube. When the cross-section is uniform along the tube or channel length, it is defined as [1] [2] =, where
For a given volume, the right circular cylinder with the smallest surface area has h = 2r. Equivalently, for a given surface area, the right circular cylinder with the largest volume has h = 2r, that is, the cylinder fits snugly in a cube of side length = altitude ( = diameter of base circle). [8]
For the thin-walled assumption to be valid, the vessel must have a wall thickness of no more than about one-tenth (often cited as Diameter / t > 20) of its radius. [4] This allows for treating the wall as a surface, and subsequently using the Young–Laplace equation for estimating the hoop stress created by an internal pressure on a thin-walled cylindrical pressure vessel:
The equilateral cylinder is characterized by being a right circular cylinder in which the diameter of the base is equal to the value of the height (geratrix). [ 4 ] Then, assuming that the radius of the base of an equilateral cylinder is r {\displaystyle r\,} then the diameter of the base of this cylinder is 2 r {\displaystyle 2r\,} and its ...
Shell integration (the shell method in integral calculus) is a method for calculating the volume of a solid of revolution, when integrating along an axis perpendicular to the axis of revolution. This is in contrast to disc integration which integrates along the axis parallel to the axis of revolution.
D o is the inside diameter of the outer pipe, D i is the outside diameter of the inner pipe. For calculation involving flow in non-circular ducts, the hydraulic diameter can be substituted for the diameter of a circular duct, with reasonable accuracy, if the aspect ratio AR of the duct cross-section remains in the range 1 / 4 < AR < 4. [11]
A cylinder (or disk) of radius R is placed in a two-dimensional, incompressible, inviscid flow. The goal is to find the steady velocity vector V and pressure p in a plane, subject to the condition that far from the cylinder the velocity vector (relative to unit vectors i and j) is: [1] = +,
The hydraulic cylinder consists of a cylinder barrel, in which a piston connected to a piston rod moves back and forth. The barrel is closed on one end by the cylinder bottom (also called the cap) and the other end by the cylinder head (also called the gland) where the piston rod comes out of the cylinder. The piston has sliding rings and seals.