Ad
related to: viscosity effect on flow rate of water through 1 2 inch pipe for sale in texas
Search results
Results from the WOW.Com Content Network
The following table gives flow rate Q such that friction loss per unit length Δp / L (SI kg / m 2 / s 2) is 0.082, 0.245, and 0.816, respectively, for a variety of nominal duct sizes. The three values chosen for friction loss correspond to, in US units inch water column per 100 feet, 0.01, .03, and 0.1.
Using ideal gas equation of state for constant temperature process (i.e., / is constant) and the conservation of mass flow rate (i.e., ˙ = is constant), the relation Qp = Q 1 p 1 = Q 2 p 2 can be obtained. Over a short section of the pipe, the gas flowing through the pipe can be assumed to be incompressible so that Poiseuille law can be used ...
In laminar flow, friction loss arises from the transfer of momentum from the fluid in the center of the flow to the pipe wall via the viscosity of the fluid; no vortices are present in the flow. Note that the friction loss is insensitive to the pipe roughness height ε : the flow velocity in the neighborhood of the pipe wall is zero.
The Reynolds number Re is taken to be Re = V D / ν, where V is the mean velocity of fluid flow, D is the pipe diameter, and where ν is the kinematic viscosity μ / ρ, with μ the fluid's Dynamic viscosity, and ρ the fluid's density. The pipe's relative roughness ε / D, where ε is the pipe's effective roughness height and D the pipe ...
Dimensionless numbers (or characteristic numbers) have an important role in analyzing the behavior of fluids and their flow as well as in other transport phenomena. [1] They include the Reynolds and the Mach numbers, which describe as ratios the relative magnitude of fluid and physical system characteristics, such as density, viscosity, speed of sound, and flow speed.
[7] [8] [9] Because of inertial effects, the fluid will prefer to the straight direction. Thus the flow rate of the straight pipe is greater than that of the vertical one. Furthermore, because the lower energy fluid in the boundary layer branches through the channels the higher energy fluid in the pipe centre remains in the pipe as shown in Fig. 4.
How much the volume viscosity contributes to the flow characteristics in e.g. a choked flow such as convergent-divergent nozzle or valve flow is not well known, but the shear viscosity is by far the most utilized viscosity coefficient. The volume viscosity will now be abandoned, and the rest of the article will focus on the shear viscosity.
For example, halving a pipe's diameter would increase the pressure drop by a factor of = (e.g. from 2 psi to 64 psi), assuming no change in flow. Pressure drop in piping is directly proportional to the length of the piping—for example, a pipe with twice the length will have twice the pressure drop, given the same flow rate. [ 8 ]
Ad
related to: viscosity effect on flow rate of water through 1 2 inch pipe for sale in texas