enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Mixture model - Wikipedia

    en.wikipedia.org/wiki/Mixture_model

    A typical finite-dimensional mixture model is a hierarchical model consisting of the following components: . N random variables that are observed, each distributed according to a mixture of K components, with the components belonging to the same parametric family of distributions (e.g., all normal, all Zipfian, etc.) but with different parameters

  3. Subspace Gaussian mixture model - Wikipedia

    en.wikipedia.org/wiki/Subspace_Gaussian_mixture...

    Subspace Gaussian mixture model (SGMM) is an acoustic modeling approach in which all phonetic states share a common Gaussian mixture model structure, and the means and mixture weights vary in a subspace of the total parameter space.

  4. EM algorithm and GMM model - Wikipedia

    en.wikipedia.org/wiki/EM_Algorithm_And_GMM_Model

    The EM algorithm consists of two steps: the E-step and the M-step. Firstly, the model parameters and the () can be randomly initialized. In the E-step, the algorithm tries to guess the value of () based on the parameters, while in the M-step, the algorithm updates the value of the model parameters based on the guess of () of the E-step.

  5. File:Parameter estimation process infinite Gaussian mixture ...

    en.wikipedia.org/wiki/File:Parameter_estimation...

    Histograms for one-dimensional datapoints belonging to clusters detected by an infinite Gaussian mixture model. During the parameter estimation based on Gibbs sampling , new clusters are created and grow on the data. The legend shows the cluster colours and the number of datapoints assigned to each cluster.

  6. Model-based clustering - Wikipedia

    en.wikipedia.org/wiki/Model-based_clustering

    Model-based clustering [1] based on a statistical model for the data, usually a mixture model. This has several advantages, including a principled statistical basis for clustering, and ways to choose the number of clusters, to choose the best clustering model, to assess the uncertainty of the clustering, and to identify outliers that do not ...

  7. Gaussian mixture model - Wikipedia

    en.wikipedia.org/?title=Gaussian_mixture_model&...

    This page was last edited on 12 October 2018, at 17:51 (UTC).; Text is available under the Creative Commons Attribution-ShareAlike 4.0 License; additional terms may apply.

  8. Kernel embedding of distributions - Wikipedia

    en.wikipedia.org/wiki/Kernel_embedding_of...

    Commonly, methods for modeling complex distributions rely on parametric assumptions that may be unfounded or computationally challenging (e.g. Gaussian mixture models), while nonparametric methods like kernel density estimation (Note: the smoothing kernels in this context have a different interpretation than the kernels discussed here) or ...

  9. Expectation–maximization algorithm - Wikipedia

    en.wikipedia.org/wiki/Expectation–maximization...

    A Gentle Tutorial of the EM Algorithm and its Application to Parameter Estimation for Gaussian Mixture and Hidden Markov Models (Technical Report TR-97-021). International Computer Science Institute. includes a simplified derivation of the EM equations for Gaussian Mixtures and Gaussian Mixture Hidden Markov Models.