Search results
Results from the WOW.Com Content Network
The resulting electrical network will have two terminals, and itself can participate in a series or parallel topology. Whether a two-terminal "object" is an electrical component (e.g. a resistor) or an electrical network (e.g. resistors in series) is a matter of perspective. This article will use "component" to refer to a two-terminal "object ...
Graphical interpretation of the parallel operator with =.. The parallel operator ‖ (pronounced "parallel", [1] following the parallel lines notation from geometry; [2] [3] also known as reduced sum, parallel sum or parallel addition) is a binary operation which is used as a shorthand in electrical engineering, [4] [5] [6] [nb 1] but is also used in kinetics, fluid mechanics and financial ...
A general formula for the current I X in a resistor R X that is in parallel with a combination of other resistors of total resistance R T (see Figure 1) is [1] = +, where I T is the total current entering the combined network of R X in parallel with R T.
Various resistor types of different shapes and sizes. A resistor is a passive two-terminal electrical component that implements electrical resistance as a circuit element. In electronic circuits, resistors are used to reduce current flow, adjust signal levels, to divide voltages, bias active elements, and terminate transmission lines, among other uses.
A voltage divider referenced to ground is created by connecting two electrical impedances in series, as shown in Figure 1. The input voltage is applied across the series impedances Z 1 and Z 2 and the output is the voltage across Z 2. Z 1 and Z 2 may be composed of any combination of elements such as resistors, inductors and capacitors.
So the equivalent circuit is a 3.75 mA current source in parallel with a 2 kΩ resistor. ... and Norton equivalents have the same voltage between the two open ...
Parallel RC circuit. The parallel RC circuit is generally of less interest than the series circuit. This is largely because the output voltage V out is equal to the input voltage V in — as a result, this circuit does not act as a filter on the input signal unless fed by a current source. With complex impedances:
The two resistors follow Ohm's law: The plot is a straight line through the origin. The other two devices do not follow Ohm's law. There are, however, components of electrical circuits which do not obey Ohm's law; that is, their relationship between current and voltage (their I – V curve ) is nonlinear (or non-ohmic).