Search results
Results from the WOW.Com Content Network
All of the right-angled triangles are similar, i.e. the ratios between their corresponding sides are the same. For sin, cos and tan the unit-length radius forms the hypotenuse of the triangle that defines them. The reciprocal identities arise as ratios of sides in the triangles where this unit line is no longer the hypotenuse.
Here, the poles are the numbers of the form (+) for the tangent and the secant, or for the cotangent and the cosecant, where k is an arbitrary integer. Recurrences relations may also be computed for the coefficients of the Taylor series of the other trigonometric functions.
Tweak the tangent so it is indeed tangent. 05:38, 4 December 2005: 612 × 618 (13 KB) Optimager~commonswiki: A circle showing the chord, secant, and tangent. This is a vector graphic version of Image:Circle lines.png, originally made by User:Jleedev on March 20, 2005 using Inkscape. The original was released under th
Sine, Cosine, Tangent (trigonometric function), Cotangent, Secant (trigonometric function), Cosecant – see Trigonometric function atan2 cis—see Euler's formula
Common lines and line segments on a circle, including a secant. A straight line can intersect a circle at zero, one, or two points. A line with intersections at two points is called a secant line, at one point a tangent line and at no points an exterior line. A chord is the line segment that joins two distinct points of a circle. A chord is ...
The hexagonal chart can be constructed with a little thought: [10] Draw three triangles pointing down, touching at a single point. This resembles a fallout shelter trefoil. Write a 1 in the middle where the three triangles touch; Write the functions without "co" on the three left outer vertices (from top to bottom: sine, tangent, secant)
Illustration of the sine and tangent inequalities. The figure at the right shows a sector of a circle with radius 1. The sector is θ/(2 π) of the whole circle, so its area is θ/2. We assume here that θ < π /2. = = = =
In trigonometry, the law of tangents or tangent rule [1] is a statement about the relationship between the tangents of two angles of a triangle and the lengths of the opposing sides. In Figure 1, a , b , and c are the lengths of the three sides of the triangle, and α , β , and γ are the angles opposite those three respective sides.