enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Comparison of deep learning software - Wikipedia

    en.wikipedia.org/wiki/Comparison_of_deep...

    C++, Wolfram Language, CUDA: Wolfram Language: Yes No Yes No Yes Yes [75] Yes Yes Yes Yes [76] Yes Software Creator Initial release Software license [a] Open source Platform Written in Interface OpenMP support OpenCL support CUDA support ROCm support [77] Automatic differentiation [2] Has pretrained models Recurrent nets Convolutional nets RBM/DBNs

  3. CUDA - Wikipedia

    en.wikipedia.org/wiki/CUDA

    CUDA provides both a low level API (CUDA Driver API, non single-source) and a higher level API (CUDA Runtime API, single-source). The initial CUDA SDK was made public on 15 February 2007, for Microsoft Windows and Linux. Mac OS X support was later added in version 2.0, [17] which supersedes the beta released February 14, 2008. [18]

  4. PyTorch - Wikipedia

    en.wikipedia.org/wiki/PyTorch

    In September 2022, Meta announced that PyTorch would be governed by the independent PyTorch Foundation, a newly created subsidiary of the Linux Foundation. [ 24 ] PyTorch 2.0 was released on 15 March 2023, introducing TorchDynamo , a Python-level compiler that makes code run up to 2x faster, along with significant improvements in training and ...

  5. DeepSpeed - Wikipedia

    en.wikipedia.org/wiki/DeepSpeed

    The library is designed to reduce computing power and memory use and to train large distributed models with better parallelism on existing computer hardware. [2] [3] DeepSpeed is optimized for low latency, high throughput training.

  6. CuPy - Wikipedia

    en.wikipedia.org/wiki/CuPy

    CuPy is an open source library for GPU-accelerated computing with Python programming language, providing support for multi-dimensional arrays, sparse matrices, and a variety of numerical algorithms implemented on top of them. [3]

  7. Nvidia NVDEC - Wikipedia

    en.wikipedia.org/wiki/Nvidia_NVDEC

    Nvidia NVDEC (formerly known as NVCUVID [1]) is a feature in its graphics cards that performs video decoding, offloading this compute-intensive task from the CPU. [2] NVDEC is a successor of PureVideo and is available in Kepler and later NVIDIA GPUs.

  8. Nvidia CUDA Compiler - Wikipedia

    en.wikipedia.org/wiki/Nvidia_CUDA_Compiler

    CUDA code runs on both the central processing unit (CPU) and graphics processing unit (GPU). NVCC separates these two parts and sends host code (the part of code which will be run on the CPU) to a C compiler like GNU Compiler Collection (GCC) or Intel C++ Compiler (ICC) or Microsoft Visual C++ Compiler, and sends the device code (the part which will run on the GPU) to the GPU.

  9. TensorFlow - Wikipedia

    en.wikipedia.org/wiki/TensorFlow

    TensorFlow is Google Brain's second-generation system. Version 1.0.0 was released on February 11, 2017. [17] While the reference implementation runs on single devices, TensorFlow can run on multiple CPUs and GPUs (with optional CUDA and SYCL extensions for general-purpose computing on graphics processing units). [18]