Ads
related to: algebraic surface definition matheducation.com has been visited by 100K+ users in the past month
This site is a teacher's paradise! - The Bender Bunch
- Worksheet Generator
Use our worksheet generator to make
your own personalized puzzles.
- 20,000+ Worksheets
Browse by grade or topic to find
the perfect printable worksheet.
- Lesson Plans
Engage your students with our
detailed lesson plans for K-8.
- Guided Lessons
Learn new concepts step-by-step
with colorful guided lessons.
- Worksheet Generator
Search results
Results from the WOW.Com Content Network
In mathematics, an algebraic surface is an algebraic variety of dimension two. In the case of geometry over the field of complex numbers , an algebraic surface has complex dimension two (as a complex manifold , when it is non-singular ) and so of dimension four as a smooth manifold .
A sphere is the surface of a solid ball, here having radius r. In mathematics, a surface is a mathematical model of the common concept of a surface.It is a generalization of a plane, but, unlike a plane, it may be curved; this is analogous to a curve generalizing a straight line.
Labs surface, a certain septic with 99 nodes; Endrass surface, a certain surface of degree 8 with 168 nodes; Sarti surface, a certain surface of degree 12 with 600 nodes; Quotient surfaces, surfaces that are constructed as the orbit space of some other surface by the action of a finite group; examples include Kummer, Godeaux, Hopf, and Inoue ...
When is an algebraic curve with field of definition the complex numbers, and if has no singular points, then these definitions agree and coincide with the topological definition applied to the Riemann surface of (its manifold of complex points).
In geometry, a hypersurface is a generalization of the concepts of hyperplane, plane curve, and surface.A hypersurface is a manifold or an algebraic variety of dimension n − 1, which is embedded in an ambient space of dimension n, generally a Euclidean space, an affine space or a projective space. [1]
Such a surface would, in modern terminology, be called a manifold; and in modern terms, the theorem proved that the curvature of the surface is an intrinsic property. Manifold theory has come to focus exclusively on these intrinsic properties (or invariants), while largely ignoring the extrinsic properties of the ambient space.
Algebraic geometry is a branch of mathematics which uses abstract algebraic techniques, mainly from commutative algebra, to solve geometrical problems. Classically, it studies zeros of multivariate polynomials ; the modern approach generalizes this in a few different aspects.
An algebraic surface is an algebraic variety of dimension two. The Enriques-Kodaira classification gives an overview of the possibilities. Over the complex numbers, a non-singular algebraic surface is an example of a 4-manifold
Ads
related to: algebraic surface definition matheducation.com has been visited by 100K+ users in the past month
This site is a teacher's paradise! - The Bender Bunch