enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Bitwise trie with bitmap - Wikipedia

    en.wikipedia.org/wiki/Bitwise_trie_with_bitmap

    In this example implementation for a bitwise trie with bitmap, nodes are placed in an array of long (64-bit) integers. A node is identified by the position (index) in that array. The index of the root node marks the root of the trie. Nodes are allocated from unused space in that array, extending the array if necessary.

  3. Binary tree - Wikipedia

    en.wikipedia.org/wiki/Binary_tree

    Binary trees labelled this way are used to implement binary search trees and binary heaps, and are used for efficient searching and sorting. The designation of non-root nodes as left or right child even when there is only one child present matters in some of these applications, in particular, it is significant in binary search trees. [10]

  4. Binary search - Wikipedia

    en.wikipedia.org/wiki/Binary_search

    Binary search Visualization of the binary search algorithm where 7 is the target value Class Search algorithm Data structure Array Worst-case performance O (log n) Best-case performance O (1) Average performance O (log n) Worst-case space complexity O (1) Optimal Yes In computer science, binary search, also known as half-interval search, logarithmic search, or binary chop, is a search ...

  5. Rope (data structure) - Wikipedia

    en.wikipedia.org/wiki/Rope_(data_structure)

    A rope is a type of binary tree where each leaf (end node) holds a string of manageable size and length (also known as a weight), and each node further up the tree holds the sum of the lengths of all the leaves in its left subtree. A node with two children thus divides the whole string into two parts: the left subtree stores the first part of ...

  6. Binary heap - Wikipedia

    en.wikipedia.org/wiki/Binary_heap

    A binary heap is a heap data structure that takes the form of a binary tree. Binary heaps are a common way of implementing priority queues. [1]: 162–163 The binary heap was introduced by J. W. J. Williams in 1964 as a data structure for implementing heapsort. [2] A binary heap is defined as a binary tree with two additional constraints: [3]

  7. Binary search tree - Wikipedia

    en.wikipedia.org/wiki/Binary_search_tree

    Fig. 1: A binary search tree of size 9 and depth 3, with 8 at the root. In computer science, a binary search tree (BST), also called an ordered or sorted binary tree, is a rooted binary tree data structure with the key of each internal node being greater than all the keys in the respective node's left subtree and less than the ones in its right subtree.

  8. Tree traversal - Wikipedia

    en.wikipedia.org/wiki/Tree_traversal

    For example, given a binary tree of infinite depth, a depth-first search will go down one side (by convention the left side) of the tree, never visiting the rest, and indeed an in-order or post-order traversal will never visit any nodes, as it has not reached a leaf (and in fact never will). By contrast, a breadth-first (level-order) traversal ...

  9. Self-balancing binary search tree - Wikipedia

    en.wikipedia.org/wiki/Self-balancing_binary...

    Most operations on a binary search tree (BST) take time directly proportional to the height of the tree, so it is desirable to keep the height small. A binary tree with height h can contain at most 2 0 +2 1 +···+2 h = 2 h+1 −1 nodes. It follows that for any tree with n nodes and height h: + And that implies: