Search results
Results from the WOW.Com Content Network
C# 3.0 introduced type inference, allowing the type specifier of a variable declaration to be replaced by the keyword var, if its actual type can be statically determined from the initializer. This reduces repetition, especially for types with multiple generic type-parameters , and adheres more closely to the DRY principle.
The programming language C# version 3.0 was released on 19 November 2007 as part of .NET Framework 3.5.It includes new features inspired by functional programming languages such as Haskell and ML, and is driven largely by the introduction of the Language Integrated Query (LINQ) pattern to the Common Language Runtime. [1]
Type inference – C# 3 with implicitly typed local variables var and C# 9 target-typed new expressions new List comprehension – C# 3 LINQ; Tuples – .NET Framework 4.0 but it becomes popular when C# 7.0 introduced a new tuple type with language support [102] Nested functions – C# 7.0 [102] Pattern matching – C# 7.0 [102]
As a precursor to the lambda functions introduced in C# 3.0, C#2.0 added anonymous delegates. These provide closure-like functionality to C#. [3] Code inside the body of an anonymous delegate has full read/write access to local variables, method parameters, and class members in scope of the delegate, excepting out and ref parameters.
C# 4.0 is a version of the C# programming language that was released on April 11, 2010. Microsoft released the 4.0 runtime and development environment Visual Studio 2010. [1] The major focus of C# 4.0 is interoperability with partially or fully dynamically typed languages and frameworks, such as the Dynamic Language Runtime and COM.
List comprehension is a syntactic construct available in some programming languages for creating a list based on existing lists. It follows the form of the mathematical set-builder notation (set comprehension) as distinct from the use of map and filter functions.
If you’re stuck on today’s Wordle answer, we’re here to help—but beware of spoilers for Wordle 1258 ahead. Let's start with a few hints.
A list comprehension has the same syntactic components to represent generation of a list in order from an input list or iterator: A variable representing members of an input list. An input list (or iterator). An optional predicate expression. And an output expression producing members of the output list from members of the input iterable that ...