enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Partially ordered set - Wikipedia

    en.wikipedia.org/wiki/Partially_ordered_set

    A partially ordered set (poset for short) is an ordered pair = (,) consisting of a set (called the ground set of ) and a partial order on . When the meaning is clear from context and there is no ambiguity about the partial order, the set X {\displaystyle X} itself is sometimes called a poset.

  3. Life - Wikipedia

    en.wikipedia.org/wiki/Life

    The definition of life has long been a challenge for scientists and philosophers. [2] [3] [4] This is partially because life is a process, not a substance. [5] [6] [7] This is complicated by a lack of knowledge of the characteristics of living entities, if any, that may have developed outside Earth.

  4. Posetal category - Wikipedia

    en.wikipedia.org/wiki/Posetal_category

    In mathematics, specifically category theory, a posetal category, or thin category, [1] is a category whose homsets each contain at most one morphism. [2] As such, a posetal category amounts to a preordered class (or a preordered set, if its objects form a set).

  5. Deviation of a poset - Wikipedia

    en.wikipedia.org/wiki/Deviation_of_a_poset

    The poset of positive integers has deviation 0: every descending chain is finite, so the defining condition for deviation is vacuously true. However, its opposite poset has deviation 1. Let k be an algebraically closed field and consider the poset of ideals of the polynomial ring k[x] in one variable. Since the deviation of this poset is the ...

  6. Graded poset - Wikipedia

    en.wikipedia.org/wiki/Graded_poset

    Sometimes a graded poset is called a ranked poset but that phrase has other meanings; see Ranked poset. A rank or rank level of a graded poset is the subset of all the elements of the poset that have a given rank value. [1] [2] Graded posets play an important role in combinatorics and can be visualized by means of a Hasse diagram.

  7. Differential poset - Wikipedia

    en.wikipedia.org/wiki/Differential_poset

    In mathematics, a differential poset is a partially ordered set (or poset for short) satisfying certain local properties. (The formal definition is given below.) This family of posets was introduced by Stanley (1988) as a generalization of Young's lattice (the poset of integer partitions ordered by inclusion), many of whose combinatorial properties are shared by all differential posets.

  8. Order isomorphism - Wikipedia

    en.wikipedia.org/wiki/Order_isomorphism

    The identity function on any partially ordered set is always an order automorphism.; Negation is an order isomorphism from (,) to (,) (where is the set of real numbers and denotes the usual numerical comparison), since −x ≥ −y if and only if x ≤ y.

  9. Euler characteristic - Wikipedia

    en.wikipedia.org/wiki/Euler_characteristic

    For example, the teardrop orbifold has Euler characteristic 1 + ⁠ 1 / p ⁠, where p is a prime number corresponding to the cone angle ⁠ 2 π / p ⁠. The concept of Euler characteristic of the reduced homology of a bounded finite poset is another generalization, important in combinatorics. A poset is "bounded" if it has smallest and ...