enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Ramanujan's sum - Wikipedia

    en.wikipedia.org/wiki/Ramanujan's_sum

    In number theory, Ramanujan's sum, usually denoted c q (n), is a function of two positive integer variables q and n defined by the formula = (,) =,where (a, q) = 1 means that a only takes on values coprime to q.

  3. 1 + 2 + 3 + 4 + ⋯ - Wikipedia

    en.wikipedia.org/wiki/1_%2B_2_%2B_3_%2B_4_%2B_%E...

    The nth partial sum of the series is the triangular number ∑ k = 1 n k = n ( n + 1 ) 2 , {\displaystyle \sum _{k=1}^{n}k={\frac {n(n+1)}{2}},} which increases without bound as n goes to infinity .

  4. Ramanujan summation - Wikipedia

    en.wikipedia.org/wiki/Ramanujan_summation

    Ramanujan summation is a technique invented by the mathematician Srinivasa Ramanujan for assigning a value to divergent infinite series.Although the Ramanujan summation of a divergent series is not a sum in the traditional sense, it has properties that make it mathematically useful in the study of divergent infinite series, for which conventional summation is undefined.

  5. Taxicab number - Wikipedia

    en.wikipedia.org/wiki/Taxicab_number

    In mathematics, the nth taxicab number, typically denoted Ta(n) or Taxicab(n), is defined as the smallest integer that can be expressed as a sum of two positive integer cubes in n distinct ways. [1] The most famous taxicab number is 1729 = Ta(2) = 1 3 + 12 3 = 9 3 + 10 3 , also known as the Hardy-Ramanujan number.

  6. List of unsolved problems in mathematics - Wikipedia

    en.wikipedia.org/wiki/List_of_unsolved_problems...

    Goldbach's conjecture: every even natural number greater than is the sum of two prime numbers. Lander, Parkin, and Selfridge conjecture : if the sum of m {\displaystyle m} k {\displaystyle k} -th powers of positive integers is equal to a different sum of n {\displaystyle n} k {\displaystyle k} -th powers of positive integers, then m + n ≥ k ...

  7. 1729 (number) - Wikipedia

    en.wikipedia.org/wiki/1729_(number)

    1729 is the natural number following 1728 and preceding 1730. It is the first nontrivial taxicab number, expressed as the sum of two cubic numbers in two different ways. It is known as the Ramanujan number or Hardy–Ramanujan number after G. H. Hardy and Srinivasa Ramanujan.

  8. Partition function (number theory) - Wikipedia

    en.wikipedia.org/wiki/Partition_function_(number...

    The function q(n) gives the number of these strict partitions of the given sum n. For example, q(3) = 2 because the partitions 3 and 1 + 2 are strict, while the third partition 1 + 1 + 1 of 3 has repeated parts. The number q(n) is also equal to the number of partitions of n in which only odd summands are permitted. [20]

  9. Rogers–Ramanujan identities - Wikipedia

    en.wikipedia.org/wiki/Rogers–Ramanujan_identities

    Thus () gives the number of decays of an integer n in which adjacent parts of the partition differ by at least 2 and in which the smallest part is greater than or equal to 2 is equal the number of decays whose parts are equal to 2 or 3 mod 5. This will be illustrated as examples in the following two tables:

  1. Related searches ramanujan sum of natural numbers from m to n calculator soup with 2 locations

    ramanujan's sumramanujan summation
    ramanujan sum formularamanujan divergent sum
    ramanujan formula