Search results
Results from the WOW.Com Content Network
Diode I-V diagram. Breakdown voltage is a parameter of a diode that defines the largest reverse voltage that can be applied without causing an exponential increase in the leakage current in the diode. Exceeding the breakdown voltage of a diode, per se, is not destructive; although, exceeding its current capacity will be.
For rectifier applications, peak inverse voltage (PIV) or peak reverse voltage (PRV) is the maximum value of reverse voltage which occurs at the peak of the input cycle when the diode is reverse-biased. [4] [5] The portion of the sinusoidal waveform which repeats or duplicates itself is known as the cycle. The part of the cycle above the ...
A diode's high resistance to current flowing in the reverse direction suddenly drops to a low resistance when the reverse voltage across the diode reaches a value called the breakdown voltage. This effect is used to regulate voltage ( Zener diodes ) or to protect circuits from high voltage surges ( avalanche diodes ).
For two-terminal devices (such as diodes and DIACs), this is sufficient to fully characterize the device. The curve tracer can display all of the interesting parameters such as the diode's forward voltage, reverse leakage current, reverse breakdown voltage, and so on. For triggerable devices such as DIACs, the forward and reverse trigger ...
English: Diode I-V diagram. Includes three main areas of operation: breakdown, reverse-biased, and forward-biased. Vbr denotes the breakdown voltage, and Vd denotes the voltage that is typically considered "on" (conducting current).
The Shockley diode equation relates the diode current of a p-n junction diode to the diode voltage .This relationship is the diode I-V characteristic: = (), where is the saturation current or scale current of the diode (the magnitude of the current that flows for negative in excess of a few , typically 10 −12 A).
In electronics, the Zener effect (employed most notably in the appropriately named Zener diode) is a type of electrical breakdown, discovered by Clarence Melvin Zener. It occurs in a reverse biased p-n diode when the electric field enables tunneling of electrons from the valence to the conduction band of a semiconductor , leading to numerous ...
Shockley derives an equation for the voltage across a p-n junction in a long article published in 1949. [2] Later he gives a corresponding equation for current as a function of voltage under additional assumptions, which is the equation we call the Shockley ideal diode equation. [3]