Search results
Results from the WOW.Com Content Network
The hazard ratio is the effect on this hazard rate of a difference, such as group membership (for example, treatment or control, male or female), as estimated by regression models that treat the logarithm of the HR as a function of a baseline hazard () and a linear combination of explanatory variables:
The hazard ratio is the quantity (), which is = in the above example. From the last calculation above, an interpretation of this is as the ratio of hazards between two "subjects" that have their variables differ by one unit: if P i = P j + 1 {\displaystyle P_{i}=P_{j}+1} , then exp ( β 1 ( P i − P j ) = exp ( β 1 ( 1 ...
If the hazard ratio is , there are total subjects, is the probability a subject in either group will eventually have an event (so that is the expected number of events at the time of the analysis), and the proportion of subjects randomized to each group is 50%, then the logrank statistic is approximately normal with mean () and variance 1. [4]
A concept closely-related but different [2] to instantaneous failure rate () is the hazard rate (or hazard function), (). In the many-system case, this is defined as the proportional failure rate of the systems still functioning at time t {\displaystyle t} (as opposed to f ( t ) {\displaystyle f(t)} , which is the expressed as a proportion of ...
In practice the odds ratio is commonly used for case-control studies, as the relative risk cannot be estimated. [1] In fact, the odds ratio has much more common use in statistics, since logistic regression, often associated with clinical trials, works with the log of the odds ratio, not relative risk. Because the (natural log of the) odds of a ...
In full generality, the accelerated failure time model can be specified as [2] (|) = ()where denotes the joint effect of covariates, typically = ([+ +]). (Specifying the regression coefficients with a negative sign implies that high values of the covariates increase the survival time, but this is merely a sign convention; without a negative sign, they increase the hazard.)
This approach performs well for certain measures and can approximate arbitrary hazard functions relatively well, while not imposing stringent computational requirements. [5] When the covariates are omitted from the analysis, the maximum likelihood boils down to the Kaplan-Meier estimator of the survivor function.
Diagram relating pre- and post-test probabilities, with the green curve (upper left half) representing a positive test, and the red curve (lower right half) representing a negative test, for the case of 90% sensitivity and 90% specificity, corresponding to a likelihood ratio positive of 9, and a likelihood ratio negative of 0.111.