Search results
Results from the WOW.Com Content Network
An antonym is one of a pair of words with opposite meanings. Each word in the pair is the antithesis of the other. A word may have more than one antonym. There are three categories of antonyms identified by the nature of the relationship between the opposed meanings.
Inverse (logic), a type of conditional sentence which is an immediate inference made from another conditional sentence; Additive inverse (negation), the inverse of a number that, when added to the original number, yields zero; Compositional inverse, a function that "reverses" another function; Inverse element
An unpaired word is one that, according to the usual rules of the language, would appear to have a related word but does not. [1] Such words usually have a prefix or suffix that would imply that there is an antonym, with the prefix or suffix being absent or opposite.
In mathematics, the inverse function of a function f (also called the inverse of f) is a function that undoes the operation of f. The inverse of f exists if and only if f is bijective , and if it exists, is denoted by f − 1 . {\displaystyle f^{-1}.}
In linguistics, converses or relational antonyms are pairs of words that refer to a relationship from opposite points of view, such as parent/child or borrow/lend. [ 1 ] [ 2 ] The relationship between such words is called a converse relation . [ 2 ]
In statistics, there is a negative relationship or inverse relationship between two variables if higher values of one variable tend to be associated with lower values of the other. A negative relationship between two variables usually implies that the correlation between them is negative, or — what is in some contexts equivalent — that the ...
A function may be strictly monotonic over a limited a range of values and thus have an inverse on that range even though it is not strictly monotonic everywhere. For example, if y = g ( x ) {\displaystyle y=g(x)} is strictly increasing on the range [ a , b ] {\displaystyle [a,b]} , then it has an inverse x = h ( y ) {\displaystyle x=h(y)} on ...
Similarly, the inverse image (or preimage) of a given subset of the codomain is the set of all elements of that map to a member of . The image of the function f {\displaystyle f} is the set of all output values it may produce, that is, the image of X {\displaystyle X} .