enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Mathematical induction - Wikipedia

    en.wikipedia.org/wiki/Mathematical_induction

    Mathematical induction is an inference rule used in formal proofs, and is the foundation of most correctness proofs for computer programs. [3] Despite its name, mathematical induction differs fundamentally from inductive reasoning as used in philosophy, in which the examination of

  3. Mathematical proof - Wikipedia

    en.wikipedia.org/wiki/Mathematical_proof

    Despite its name, mathematical induction is a method of deduction, not a form of inductive reasoning. In proof by mathematical induction, a single "base case" is proved, and an "induction rule" is proved that establishes that any arbitrary case implies the next case.

  4. List of mathematical proofs - Wikipedia

    en.wikipedia.org/wiki/List_of_mathematical_proofs

    Bertrand's postulate and a proof; Estimation of covariance matrices; Fermat's little theorem and some proofs; Gödel's completeness theorem and its original proof; Mathematical induction and a proof; Proof that 0.999... equals 1; Proof that 22/7 exceeds π; Proof that e is irrational; Proof that π is irrational

  5. All horses are the same color - Wikipedia

    en.wikipedia.org/wiki/All_horses_are_the_same_color

    The argument above makes the implicit assumption that the set of + horses has the size at least 3, [3] so that the two proper subsets of horses to which the induction assumption is applied would necessarily share a common element. This is not true at the first step of induction, i.e., when + =.

  6. Proof by exhaustion - Wikipedia

    en.wikipedia.org/wiki/Proof_by_exhaustion

    Proof by exhaustion, also known as proof by cases, proof by case analysis, complete induction or the brute force method, is a method of mathematical proof in which the statement to be proved is split into a finite number of cases or sets of equivalent cases, and where each type of case is checked to see if the proposition in question holds. [1]

  7. Proofs involving the addition of natural numbers - Wikipedia

    en.wikipedia.org/wiki/Proofs_involving_the...

    We prove associativity by first fixing natural numbers a and b and applying induction on the natural number c. For the base case c = 0, (a + b) + 0 = a + b = a + (b + 0) Each equation follows by definition [A1]; the first with a + b, the second with b. Now, for the induction. We assume the induction hypothesis, namely we assume that for some ...

  8. AM–GM inequality - Wikipedia

    en.wikipedia.org/wiki/AM–GM_inequality

    For the following proof we apply mathematical induction and only well-known rules of arithmetic. Induction basis: For n = 1 the statement is true with equality. Induction hypothesis: Suppose that the AM–GM statement holds for all choices of n non-negative real numbers. Induction step: Consider n + 1 non-negative real numbers x 1, . . . , x n+1, .

  9. Proof by infinite descent - Wikipedia

    en.wikipedia.org/wiki/Proof_by_infinite_descent

    In mathematics, a proof by infinite descent, also known as Fermat's method of descent, is a particular kind of proof by contradiction [1] used to show that a statement cannot possibly hold for any number, by showing that if the statement were to hold for a number, then the same would be true for a smaller number, leading to an infinite descent and ultimately a contradiction. [2]