Search results
Results from the WOW.Com Content Network
The median of three vertices in a tree, showing the subtree formed by the union of shortest paths between the vertices. Every tree is a median graph. To see this, observe that in a tree, the union of the three shortest paths between pairs of the three vertices a, b, and c is either itself a path, or a subtree formed by three paths meeting at a single central node with degree three.
The trees and hypercube graphs are examples of median graphs. Since the median graphs include the squaregraphs, simplex graphs, and Fibonacci cubes, as well as the covering graphs of finite distributive lattices, these are all partial cubes. The planar dual graph of an arrangement of lines in the Euclidean plane is a partial cube.
The median of a power law distribution x −a, with exponent a > 1 is 2 1/(a − 1) x min, where x min is the minimum value for which the power law holds [10] The median of an exponential distribution with rate parameter λ is the natural logarithm of 2 divided by the rate parameter: λ −1 ln 2.
An example of the kind of differences that can be tested for is non-normality of the population distribution. Recurrence plot : In descriptive statistics and chaos theory, a recurrence plot (RP) is a plot showing, for a given moment in time, the times at which a phase space. In other words, it is a graph of
It is an example of median graph, and is associated with a median algebra on the cliques of a graph: the median m(A,B,C) of three cliques A, B, and C is the clique whose vertices belong to at least two of the cliques A, B, and C. [5] The clique-sum is a method for combining two graphs by merging them along a shared clique.
A median graph is an undirected graph in which for every three vertices , , and there is a unique vertex ,, that belongs to shortest paths between any two of , , and . If this is the case, then the operation x , y , z {\displaystyle \langle x,y,z\rangle } defines a median algebra having the vertices of the graph as its elements.
For example, a distribution of points in the plane will typically have a mean and a mode, but the concept of median does not apply. The median makes sense when there is a linear order on the possible values. Generalizations of the concept of median to higher-dimensional spaces are the geometric median and the centerpoint.
For the 1-dimensional case, the geometric median coincides with the median.This is because the univariate median also minimizes the sum of distances from the points. (More precisely, if the points are p 1, ..., p n, in that order, the geometric median is the middle point (+) / if n is odd, but is not uniquely determined if n is even, when it can be any point in the line segment between the two ...