Search results
Results from the WOW.Com Content Network
Differential Equations and Linear Algebra (2014) Differential Equations and Linear Algebra - New Book Website; Essays in Linear Algebra (2012) Algorithms for Global Positioning, with Kai Borre (2012) An Analysis of the Finite Element Method, with George Fix (2008) Computational Science and Engineering (2007) Linear Algebra and Its Applications ...
These equations, often complex and non-linear, can be linearized using linear algebra methods, allowing for simpler solutions and analyses. In the field of fluid dynamics, linear algebra finds its application in computational fluid dynamics (CFD), a branch that uses numerical analysis and data structures to solve and analyze problems involving ...
Linear systems are a fundamental part of linear algebra, a subject used in most modern mathematics. Computational algorithms for finding the solutions are an important part of numerical linear algebra, and play a prominent role in engineering, physics, chemistry, computer science, and economics.
Linear Algebra and its Applications is a biweekly peer-reviewed mathematics journal published by Elsevier and covering matrix theory and finite-dimensional linear algebra. History [ edit ]
[3] [4] In contrast, linear algebra deals mostly with finite-dimensional spaces, and does not use topology. An important part of functional analysis is the extension of the theories of measure , integration , and probability to infinite-dimensional spaces, also known as infinite dimensional analysis .
The Steinitz exchange lemma is a basic theorem in linear algebra used, for example, to show that any two bases for a finite-dimensional vector space have the same number of elements. The result is named after the German mathematician Ernst Steinitz .
Similarly, a differential equation is said to be linear if it can be written with linear differential operators, but it can still have nonlinear expressions in it. In a mathematical programming model, if the objective functions and constraints are represented entirely by linear equations , then the model is regarded as a linear model.
A scalar is an element of a field which is used to define a vector space.In linear algebra, real numbers or generally elements of a field are called scalars and relate to vectors in an associated vector space through the operation of scalar multiplication (defined in the vector space), in which a vector can be multiplied by a scalar in the defined way to produce another vector.