Search results
Results from the WOW.Com Content Network
An autotroph is an organism that can convert abiotic sources of energy into energy stored in organic compounds, which can be used by other organisms. Autotrophs produce complex organic compounds (such as carbohydrates , fats , and proteins ) using carbon from simple substances such as carbon dioxide, [ 1 ] generally using energy from light or ...
A closed ecological system must contain at least one autotrophic organism. While both chemotrophic and phototrophic organisms are plausible, almost all closed ecological systems to date are based on an autotroph such as green algae.
Organotrophs use organic compounds as electron/hydrogen donors. Lithotrophs use inorganic compounds as electron/hydrogen donors.. The electrons or hydrogen atoms from reducing equivalents (electron donors) are needed by both phototrophs and chemotrophs in reduction-oxidation reactions that transfer energy in the anabolic processes of ATP synthesis (in heterotrophs) or biosynthesis (in autotrophs).
Winogradsky column showing Photoautotrophs in purple and green. Photoautotrophs are organisms that can utilize light energy from sunlight and elements (such as carbon) from inorganic compounds to produce organic materials needed to sustain their own metabolism (i.e. autotrophy).
Position in the food web, or trophic level, is used in ecology to broadly classify organisms as autotrophs or heterotrophs. This is a non-binary classification; some organisms (such as carnivorous plants) occupy the role of mixotrophs, or autotrophs that additionally obtain organic matter from non-atmospheric sources.
A black smoker vent in the Atlantic Ocean, providing energy and nutrients for chemotrophs. Chemoautotrophs are autotrophic organisms that can rely on chemosynthesis, i.e. deriving biological energy from chemical reactions of environmental inorganic substrates and synthesizing all necessary organic compounds from carbon dioxide.
A lithoautotroph is an organism which derives energy from reactions of reduced compounds of mineral (inorganic) origin. [1] Two types of lithoautotrophs are distinguished by their energy source; photolithoautotrophs derive their energy from light while chemolithoautotrophs (chemolithotrophs or chemoautotrophs) derive their energy from chemical reactions. [1]
For example, phytoplankton may alter resource allocation between the P-rich biosynthetic apparatus, N-rich light-harvesting apparatus, and C-rich energy storage reserves. [93] Under a typical future warming scenario, the global ocean is expected to undergo changes in nutrient availability, temperature, and irradiance . [ 94 ]