Search results
Results from the WOW.Com Content Network
SHA-1 produces a message digest based on principles similar to those used by Ronald L. Rivest of MIT in the design of the MD2, MD4 and MD5 message digest algorithms, but generates a larger hash value (160 bits vs. 128 bits).
SHA-1: A 160-bit hash function which resembles the earlier MD5 algorithm. This was designed by the National Security Agency (NSA) to be part of the Digital Signature Algorithm . Cryptographic weaknesses were discovered in SHA-1, and the standard was no longer approved for most cryptographic uses after 2010.
Collisions against the full SHA-1 algorithm can be produced using the shattered attack and the hash function should be considered broken. SHA-1 produces a hash digest of 160 bits (20 bytes). Documents may refer to SHA-1 as just "SHA", even though this may conflict with the other Secure Hash Algorithms such as SHA-0, SHA-2, and SHA-3.
The following tables compare general and technical information for a number of cryptographic hash functions. See the individual functions' articles for further information. This article is not all-inclusive or necessarily up-to-date. An overview of hash function security/cryptanalysis can be found at hash function security summary.
Using SHA-1 as a hash function, the password is stretched into a 128-bit key 50,000 times before opening the document; as a result, the time required to crack it is vastly increased, similar to PBKDF2, scrypt or other KDFs. [citation needed] Office 2010 employed AES and a 128-bit key, but the number of SHA-1 conversions doubled to 100,000. [4]
A universal hashing scheme is a randomized algorithm that selects a hash function h among a family of such functions, in such a way that the probability of a collision of any two distinct keys is 1/m, where m is the number of distinct hash values desired—independently of the two keys. Universal hashing ensures (in a probabilistic sense) that ...
HMAC-SHA1 generation. In cryptography, an HMAC (sometimes expanded as either keyed-hash message authentication code or hash-based message authentication code) is a specific type of message authentication code (MAC) involving a cryptographic hash function and a secret cryptographic key.
Although all clients and servers have to support the SHA-1 hashing algorithm, SCRAM is, unlike CRAM-MD5 or DIGEST-MD5, independent from the underlying hash function. [4] Any hash function defined by the IANA can be used instead. [5]