Search results
Results from the WOW.Com Content Network
Otherwise, n may or may not be prime. The Solovay–Strassen test is an Euler probable prime test (see PSW [3] page 1003). For each individual value of a, the Solovay–Strassen test is weaker than the Miller–Rabin test. For example, if n = 1905 and a = 2, then the Miller-Rabin test shows that n is composite, but the Solovay–Strassen test ...
Prime95, also distributed as the command-line utility mprime for FreeBSD and Linux, is a freeware application written by George Woltman. It is the official client of the Great Internet Mersenne Prime Search (GIMPS), a volunteer computing project dedicated to searching for Mersenne primes. It is also used in overclocking to test for system ...
The Miller–Rabin primality test or Rabin–Miller primality test is a probabilistic primality test: an algorithm which determines whether a given number is likely to be prime, similar to the Fermat primality test and the Solovay–Strassen primality test. It is of historical significance in the search for a polynomial-time deterministic ...
The AKS primality test (also known as Agrawal–Kayal–Saxena primality test and cyclotomic AKS test) is a deterministic primality-proving algorithm created and published by Manindra Agrawal, Neeraj Kayal, and Nitin Saxena, computer scientists at the Indian Institute of Technology Kanpur, on August 6, 2002, in an article titled "PRIMES is in P ...
REM Eratosthenes Sieve Prime Number Program in BASIC 1 SIZE = 8190 2 DIM FLAGS (8191) 3 PRINT "Only 1 iteration" 5 COUNT = 0 6 FOR I = 0 TO SIZE 7 FLAGS (I) = 1 8 NEXT I 9 FOR I = 0 TO SIZE 10 IF FLAGS (I) = 0 THEN 18 11 PRIME = I + I + 3 12 K = I + PRIME 13 IF K > SIZE THEN 17 14 FLAGS (K) = 0 15 K = K + PRIME 16 GOTO 13 17 COUNT = COUNT + 1 ...
In computational number theory, the Adleman–Pomerance–Rumely primality test is an algorithm for determining whether a number is prime. Unlike other, more efficient algorithms for this purpose, it avoids the use of random numbers, so it is a deterministic primality test .
Get answers to your AOL Mail, login, Desktop Gold, AOL app, password and subscription questions. Find the support options to contact customer care by email, chat, or phone number.
Libgcrypt uses a similar process with base 2 for the Fermat test, but OpenSSL does not. In practice with most big number libraries such as GMP, the Fermat test is not noticeably faster than a Miller–Rabin test, and can be slower for many inputs. [4] As an exception, OpenPFGW uses only the Fermat test for probable prime testing.