enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Transformer (deep learning architecture) - Wikipedia

    en.wikipedia.org/wiki/Transformer_(deep_learning...

    Transformer architecture is now used alongside many generative models that contribute to the ongoing AI boom. In language modelling, ELMo (2018) was a bi-directional LSTM that produces contextualized word embeddings, improving upon the line of research from bag of words and word2vec. It was followed by BERT (2018), an encoder-only Transformer ...

  3. Generative pre-trained transformer - Wikipedia

    en.wikipedia.org/wiki/Generative_pre-trained...

    This was optimized into the transformer architecture, published by Google researchers in Attention Is All You Need (2017). [27] That development led to the emergence of large language models such as BERT (2018) [28] which was a pre-trained transformer (PT) but not designed to be generative (BERT was an "encoder-only" model).

  4. Attention Is All You Need - Wikipedia

    en.wikipedia.org/wiki/Attention_Is_All_You_Need

    Transformer architecture is now used alongside many generative models that contribute to the ongoing AI boom. In language modelling, ELMo (2018) was a bi-directional LSTM that produces contextualized word embeddings, improving upon the line of research from bag of words and word2vec. It was followed by BERT (2018), an encoder-only Transformer ...

  5. Attention (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Attention_(machine_learning)

    Possibly because the simplistic database analogy is flawed, much effort has gone into understand Attention further by studying their roles in focused settings, such as in-context learning, [32] masked language tasks, [33] stripped down transformers, [34] bigram statistics, [35] N-gram statistics, [36] pairwise convolutions, [37] and arithmetic ...

  6. BERT (language model) - Wikipedia

    en.wikipedia.org/wiki/BERT_(language_model)

    High-level schematic diagram of BERT. It takes in a text, tokenizes it into a sequence of tokens, add in optional special tokens, and apply a Transformer encoder. The hidden states of the last layer can then be used as contextual word embeddings. BERT is an "encoder-only" transformer architecture. At a high level, BERT consists of 4 modules:

  7. Residual neural network - Wikipedia

    en.wikipedia.org/wiki/Residual_neural_network

    The Transformer architecture includes residual connections. All transformer architectures include residual connections. Indeed, very deep transformers cannot be trained without them. [10] The original ResNet paper made no claim on being inspired by biological systems. However, later research has related ResNet to biologically-plausible algorithms.

  8. AOL Mail

    mail.aol.com

    Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!

  9. GPT-2 - Wikipedia

    en.wikipedia.org/wiki/GPT-2

    Since the transformer architecture enabled massive parallelization, GPT models could be trained on larger corpora than previous NLP (natural language processing) models.. While the GPT-1 model demonstrated that the approach was viable, GPT-2 would further explore the emergent properties of networks trained on extremely large corpo