enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Empirical orthogonal functions - Wikipedia

    en.wikipedia.org/wiki/Empirical_orthogonal_functions

    In statistics and signal processing, the method of empirical orthogonal function (EOF) analysis is a decomposition of a signal or data set in terms of orthogonal basis functions which are determined from the data.

  3. Eigenvalue algorithm - Wikipedia

    en.wikipedia.org/wiki/Eigenvalue_algorithm

    Given an n × n square matrix A of real or complex numbers, an eigenvalue λ and its associated generalized eigenvector v are a pair obeying the relation [1] =,where v is a nonzero n × 1 column vector, I is the n × n identity matrix, k is a positive integer, and both λ and v are allowed to be complex even when A is real.l When k = 1, the vector is called simply an eigenvector, and the pair ...

  4. Eigenvalues and eigenvectors of the second derivative

    en.wikipedia.org/wiki/Eigenvalues_and...

    These formulas are used to derive the expressions for eigenfunctions of Laplacian in case of separation of variables, as well as to find eigenvalues and eigenvectors of multidimensional discrete Laplacian on a regular grid, which is presented as a Kronecker sum of discrete Laplacians in one-dimension.

  5. Eigenfunction - Wikipedia

    en.wikipedia.org/wiki/Eigenfunction

    Its eigenfunctions form a basis of the function space on which the operator is defined [5] As a consequence, in many important cases, the eigenfunctions of the Hermitian operator form an orthonormal basis. In these cases, an arbitrary function can be expressed as a linear combination of the eigenfunctions of the Hermitian operator.

  6. Kosambi–Karhunen–Loève theorem - Wikipedia

    en.wikipedia.org/wiki/Kosambi–Karhunen–Loève...

    By Mercer's theorem, there consequently exists a set λ k, e k (t) of eigenvalues and eigenfunctions of T K X forming an orthonormal basis of L 2 ([a,b]), and K X can be expressed as (,) = = () The process X t can be expanded in terms of the eigenfunctions e k as:

  7. Position operator - Wikipedia

    en.wikipedia.org/wiki/Position_operator

    The eigenfunctions of the position operator (on the space of tempered distributions), represented in position space, are Dirac delta functions. Informal proof. To show that possible eigenvectors of the position operator should necessarily be Dirac delta distributions, suppose that ψ {\displaystyle \psi } is an eigenstate of the position ...

  8. Legendre polynomials - Wikipedia

    en.wikipedia.org/wiki/Legendre_polynomials

    From this standpoint, the eigenfunctions of the angular part of the Laplacian operator are the spherical harmonics, of which the Legendre polynomials are (up to a multiplicative constant) the subset that is left invariant by rotations about the polar axis.

  9. Eigenvalues and eigenvectors - Wikipedia

    en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors

    Using the Leibniz formula for determinants, the left-hand side of equation is a polynomial function of the variable λ and the degree of this polynomial is n, the order of the matrix A. Its coefficients depend on the entries of A , except that its term of degree n is always (−1) n λ n .