enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Eigenfunction - Wikipedia

    en.wikipedia.org/wiki/Eigenfunction

    As shown in an earlier example, the solution of Equation is the exponential = /. Equation is the time-independent Schrödinger equation. The eigenfunctions φ k of the Hamiltonian operator are stationary states of the quantum mechanical system, each with a corresponding energy E k. They represent allowable energy states of the system and may be ...

  3. Eigenvalues and eigenvectors - Wikipedia

    en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors

    Comparing this equation to equation , it follows immediately that a left eigenvector of is the same as the transpose of a right eigenvector of , with the same eigenvalue. Furthermore, since the characteristic polynomial of A T {\displaystyle A^{\textsf {T}}} is the same as the characteristic polynomial of A {\displaystyle A} , the left and ...

  4. Mathematical formulation of quantum mechanics - Wikipedia

    en.wikipedia.org/wiki/Mathematical_formulation...

    The phenomenology of quantum physics arose roughly between 1895 and 1915, and for the 10 to 15 years before the development of quantum mechanics (around 1925) physicists continued to think of quantum theory within the confines of what is now called classical physics, and in particular within the same mathematical structures.

  5. Variational method (quantum mechanics) - Wikipedia

    en.wikipedia.org/wiki/Variational_method...

    Suppose we are given a Hilbert space and a Hermitian operator over it called the Hamiltonian.Ignoring complications about continuous spectra, we consider the discrete spectrum of and a basis of eigenvectors {| } (see spectral theorem for Hermitian operators for the mathematical background): | =, where is the Kronecker delta = {, =, and the {| } satisfy the eigenvalue equation | = | .

  6. Eigenvalues and eigenvectors of the second derivative

    en.wikipedia.org/wiki/Eigenvalues_and...

    These formulas are used to derive the expressions for eigenfunctions of Laplacian in case of separation of variables, as well as to find eigenvalues and eigenvectors of multidimensional discrete Laplacian on a regular grid, which is presented as a Kronecker sum of discrete Laplacians in one-dimension.

  7. Hamiltonian (quantum mechanics) - Wikipedia

    en.wikipedia.org/wiki/Hamiltonian_(quantum...

    In quantum mechanics, the Hamiltonian of a system is an operator corresponding to the total energy of that system, including both kinetic energy and potential energy.Its spectrum, the system's energy spectrum or its set of energy eigenvalues, is the set of possible outcomes obtainable from a measurement of the system's total energy.

  8. Creation and annihilation operators - Wikipedia

    en.wikipedia.org/wiki/Creation_and_annihilation...

    Further simplifications of this equation enable one to derive all the properties listed above thus far. Letting p = − i d d q {\displaystyle p=-i{\frac {d}{dq}}} , where p {\displaystyle p} is the nondimensionalized momentum operator one has

  9. Position operator - Wikipedia

    en.wikipedia.org/wiki/Position_operator

    The eigenfunctions of the position operator (on the space of tempered distributions), represented in position space, are Dirac delta functions. Informal proof. To show that possible eigenvectors of the position operator should necessarily be Dirac delta distributions, suppose that ψ {\displaystyle \psi } is an eigenstate of the position ...