Search results
Results from the WOW.Com Content Network
No tangent line can be drawn through a point within a circle, since any such line must be a secant line. However, two tangent lines can be drawn to a circle from a point P outside of the circle. The geometrical figure of a circle and both tangent lines likewise has a reflection symmetry about the radial axis joining P to the center point O of ...
A straight line can intersect a circle at zero, one, or two points. A line with intersections at two points is called a secant line, at one point a tangent line and at no points an exterior line. A chord is the line segment that joins two distinct points of a circle. A chord is therefore contained in a unique secant line and each secant line ...
The tangent line through a point P on the circle is perpendicular to the diameter passing through P. If P = (x 1, y 1) and the circle has centre (a, b) and radius r, then the tangent line is perpendicular to the line from (a, b) to (x 1, y 1), so it has the form (x 1 − a)x + (y 1 – b)y = c.
The geometrical idea of the tangent line as the limit of secant lines serves as the motivation for analytical methods that are used to find tangent lines explicitly. The question of finding the tangent line to a graph, or the tangent line problem, was one of the central questions leading to the development of calculus in the 17th century.
Tangent lines to circles; Circle packing theorem, the result that every planar graph may be realized by a system of tangent circles; Hexafoil, the shape formed by a ring of six tangent circles; Feuerbach's theorem on the tangency of the nine-point circle of a triangle with its incircle and excircles; Descartes' theorem; Ford circle; Bankoff circle
The tangent-secant theorem can be proven using similar triangles (see graphic). Like the intersecting chords theorem and the intersecting secants theorem, the tangent-secant theorem represents one of the three basic cases of a more general theorem about two intersecting lines and a circle, namely, the power of point theorem.
The secants ′ ¯, ′ ¯ meet on the radical axis of the given two circles. Moving the lower secant (see diagram) towards the upper one, the red circle becomes a circle, that is tangent to both given circles. The center of the tangent circle is the intercept of the lines ¯, ¯. The secants ′ ¯, ′ ¯ become tangents at the points ,.
Animation showing the circular secant planes of the ellipsoid. A secant plane is a plane containing a nontrivial section of a sphere or an ellipsoid, or such a plane that a sphere is projected onto. Secant planes are similar to tangent planes, which contact the sphere's surface at a point, while secant planes contact the surface along curves.