Search results
Results from the WOW.Com Content Network
In geometry, the rhombille tiling, [1] also known as tumbling blocks, [2] reversible cubes, or the dice lattice, is a tessellation of identical 60° rhombi on the Euclidean plane. Each rhombus has two 60° and two 120° angles; rhombi with this shape are sometimes also called diamonds. Sets of three rhombi meet at their 120° angles, and sets ...
The regular skew polyhedron onto which the Laves graph can be inscribed. The edges of the Laves graph are diagonals of some of the squares of this polyhedral surface. As Coxeter (1955) describes, the vertices of the Laves graph can be defined by selecting one out of every eight points in the three-dimensional integer lattice, and forming their nearest neighbor graph.
A common type of lattice graph (known under different names, such as grid graph or square grid graph) is the graph whose vertices correspond to the points in the plane with integer coordinates, x-coordinates being in the range 1, ..., n, y-coordinates being in the range 1, ..., m, and two vertices being connected by an edge whenever the corresponding points are at distance 1.
A lattice in the sense of a 3-dimensional array of regularly spaced points coinciding with e.g. the atom or molecule positions in a crystal, or more generally, the orbit of a group action under translational symmetry, is a translation of the translation lattice: a coset, which need not contain the origin, and therefore need not be a lattice in ...
The oblique lattice is one of the five two-dimensional Bravais lattice types. [1] The symmetry category of the lattice is wallpaper group p2. The primitive translation vectors of the oblique lattice form an angle other than 90° and are of unequal lengths.
If the point group is constrained to be a crystallographic point group, a symmetry of some three-dimensional lattice, then the resulting line group is called a rod group. There are 75 rod groups. The Coxeter notation is based on the rectangular wallpaper groups, with the vertical axis wrapped into a cylinder of symmetry order n or 2n.
The rectangular lattice and rhombic lattice (or centered rectangular lattice) constitute two of the five two-dimensional Bravais lattice types. [1] The symmetry categories of these lattices are wallpaper groups pmm and cmm respectively. The conventional translation vectors of the rectangular lattices form an angle of 90° and are of unequal ...
Below each diagram is the Pearson symbol for that Bravais lattice. Note: In the unit cell diagrams in the following table the lattice points are depicted using black circles and the unit cells are depicted using parallelograms (which may be squares or rectangles) outlined in black. Although each of the four corners of each parallelogram ...