Search results
Results from the WOW.Com Content Network
Radiative transfer (also called radiation transport) is the physical phenomenon of energy transfer in the form of electromagnetic radiation. The propagation of radiation through a medium is affected by absorption, emission, and scattering processes. The equation of radiative transfer describes these interactions mathematically. Equations of ...
At the core of a radiative transfer model lies the radiative transfer equation that is numerically solved using a solver such as a discrete ordinate method or a Monte Carlo method. The radiative transfer equation is a monochromatic equation to calculate radiance in a single layer of the Earth's atmosphere.
The method of discrete ordinates, or the S n method, is one way to approximately solve the RTE by discretizing both the xyz-domain and the angular variables that specify the direction of radiation. The methods were developed by Subrahmanyan Chandrasekhar when he was working on radiative transfer.
In models of radiative transfer, the two-stream approximation is a discrete ordinate approximation in which radiation propagating along only two discrete directions is considered. In other words, the two-stream approximation assumes the intensity is constant with angle in the upward hemisphere, with a different constant value in the downward ...
The RTE is a differential equation describing radiance (, ^,).It can be derived via conservation of energy.Briefly, the RTE states that a beam of light loses energy through divergence and extinction (including both absorption and scattering away from the beam) and gains energy from light sources in the medium and scattering directed towards the beam.
Modeling photon propagation with Monte Carlo methods is a flexible yet rigorous approach to simulate photon transport. In the method, local rules of photon transport are expressed as probability distributions which describe the step size of photon movement between sites of photon-matter interaction and the angles of deflection in a photon's trajectory when a scattering event occurs.
ARTS (Atmospheric Radiative Transfer Simulator) is a widely used [2] atmospheric radiative transfer simulator for infrared, microwave, and sub-millimeter wavelengths. [3] While the model is developed by a community, core development is done by the University of Hamburg and Chalmers University, with previous participation from Luleå University of Technology and University of Bremen.
The Rapid Radiative Transfer Model for GCMs (RRTM-G) is an accelerated version of RRTM that provides improved efficiency with minimal loss of accuracy for application to general circulation models. The latter divides the solar spectrum into 14 bands within which a total of 112 pseudo-monochromatic calculations are performed, and in the thermal ...